Заметим, что если имеется несколько сортов молекул с разными массами, то число их убывает по разным экспонентам. Число более тяжелых молекул убывает с высотой быстрее, чем число легких молекул. Поэтому можно ожидать, что раз кислород тяжелее азота, то по мере подъема вверх относительное содержание азота в атмосфере (смеси азота и кислорода) будет возрастать. В нашей атмосфере, во всяком случае на доступных высотах, этого фактически не происходит, ибо вследствие воздушных возмущений газы вновь перемешиваются.
Ведь это же не изотермическая атмосфера. Тем не менее на больших высотах преобладают очень легкие газы, например водород, так как молекулы легких газов способны забраться на такую высоту, где все остальные экспоненты уже вымрут (фиг. 40.2).
§ 2. Закон Болъцмаиа
Отметим здесь тот факт, что числитель показателя экспоненты в равенстве (40.1) — это
e-п.э./kT
где п.э. — потенциальная энергия отдельного атома.
Возможно, что это случайность и этот закон справедлив только в частном случае однородного гравитационного поля. Однако можно показать, что это весьма общее утверждение. Предположим, что на молекулы газа действуют какие-то иные, не гравитационные, силы. Например, молекулы обладают электрическим зарядом, а тогда они реагируют на электрическое поле или на другой заряд, притягивающий их. А может быть, в результате взаимного притяжения атомов друг к другу или к стенкам, или к какому-нибудь твердому телу, или еще к чему-то существуют какие-то силы притяжения, которые зависят от взаимного расположения молекул и действуют на все молекулы. Предположим теперь для простоты, что все молекулы одинаковы и что сила действует на каждую отдельиую молекулу, так что полная сила, действующая на произвольно выделяемую часть газа, равна просто произведению числа молекул на силу, действующую на одну молекулу. Дело совсем упростится, если выбрать систему координат так, что сила F будет действовать вдоль оси
Так же, как и раньше, рассечем газ двумя параллельными плоскостями, промежуток между которыми равен
Теперь заметим, что —
n=(постоянная)
Таким образом, то, что нам удалось заметить в частном случае, справедливо вообще. (А что если
Таким образом, мы знаем кое-что о распределении молекул. Предположим, что в нашем распоряжении имеется плавающий в жидкости положительный ион; он притягивает окружающие его отрицательные ионы. Много ли их окажется на разных расстояниях от положительного иона? Если нам известно, как зависит от расстояния потенциальная энергия, то отношение чисел ионов на разных расстояниях определяется полученным нами законом. Этому закону можно найти еще много других применений.
§ 3. Испарение жидкости
В менее элементарной статистической механике пытаются решить следующую важную задачу. Предположим, что имеется совокупность притягивающихся друг к другу молекул и сила между любыми двумя молекулами, скажем i-й и j-й, зависит только от расстояния между ними rij