Читаем Feynmann 5 полностью

Один из самых важных принципов, упрощающих получение величины полей, состоит в следующем. Пусть некоторое коли­чество движущихся каким-то образом зарядов создает поле E1 , a другая совокупность зарядов — поле Е2. Если действуют оба набора зарядов одновременно (сохраняя те же свои положения и движения, какими они обладали, когда рассматривались порознь), то возникающее поле рав­но в точности сумме

Е = Е1 + Е2. (1.3)

Этот факт называется принципом на­ложения полей (или принципом су­перпозиции}. Он выполняется и для магнитных полей.

Принцип этот означает, что если нам известен закон для электричес­кого и магнитного полей, образуемых одиночным зарядом, движущимся произвольным образом, то, значит, нам известны все законы электроди­намики. Если мы хотим знать силу, действующую на заряд А, нам нужно только рассчитать величину полей Е и В, созданных каждым из зарядов В, С, D и т. д., и сложить все эти Е и В; тем самым мы найдем поля, а из них — силы, действующие на А. Если бы оказалось, что поле, созда­ваемое одиночным зарядом, отлича­ется простотой, то это стало бы са­мым изящным способом описания законов электродинамики. Но мы уже описывали этот закон (см. вып. 3, гл. 28), и, к сожалению, он довольно сложен.

Оказывается, что форма, в которой законы электродинамики становятся простыми, совсем не такая, какой можно было бы ожидать. Она не проста, если мы захотим иметь формулу для силы, с которой один заряд действует на другой. Правда, когда заряды покоятся, закон силы — закон Кулона — прост, но когда заряды движутся, соотношения усложняются из-за запа­здывания во времени, влияния ускорения и т. п. В итоге лучше не пытаться строить электродинамику с помощью одних лишь законов сил, действующих между зарядами; гораздо более приемлема другая точка зрения, при которой с законами элек­тродинамики легче управляться.

§ 2. Электрические и магнитные поля

Первым делом нужно несколько расширить наши представ­ления об электрическом и магнитном векторах Е и В. Мы опре­делили их через силы, действующие на заряд. Теперь мы наме­реваемся говорить об электрическом и магнитном полях в точке, даже если там нет никакого заряда.

Фиг. 1.1. Векторное поле, пред­ставленное множеством стрелок, длина и направление которых от­мечают величину векторного поля в тех точках, откуда выходят стрелки.

Следовательно, мы утверж­даем, что раз на заряд «действуют» силы, то в том месте, где он стоял, остается «нечто» и тогда, когда заряд оттуда убрали. Если заряд, расположенный в точке (х, у, z), в момент t ощущает действие силы F, согласно уравнению (1.1), то мы связываем векторы Е и В с точкой (х, у, z) в пространстве. Можно считать, что Е (х, y, z, t) и В (х, у, z, t) дают силы, действие которых ощутит в момент t заряд, расположенный в (х, у, z), при условии, что помещение заряда в этой точке не потревожит ни распо­ложения, ни движения всех прочих зарядов, ответственных за поля.

Следуя этому представлению, мы связываем с каждой точкой (х, у, z) пространства два вектора Е и В, способных меняться со временем. Электрические и магнитные поля тогда рассматри­ваются как векторные функции от х, у, z и t. Поскольку вектор определяется своими компонентами, то каждое из полей Е (х, у, 2, t) и В (х, у, z, t) представляет собой три математиче­ские функции от х, у, z и t.

Именно потому, что Е (или В) может быть определено для каждой точки пространства, его и называют «полем». Поле — это любая физическая величина, которая в разных точках про­странства принимает различные значения. Скажем, темпера­тура — это поле (в этом случае скалярное), которое можно записать в виде Т (х, у, z). Кроме того, температура может ме­няться и во времени, тогда мы скажем, что температурное поле зависит от времени, и напишем Т (х, у, z, t). Другим примером поля может служить «поле скоростей» текущей жидкости. Мы записываем скорость жидкости в любой точке пространства в момент t в виде v (х, у, z, t). Поле это векторное.

Вернемся к электромагнитным полям. Хотя формулы, по которым они создаются зарядами, и сложны, у них есть следую­щее важное свойство: связь между значениями полей в некото­рой точке и значениями их в соседней точке очень проста. Нескольких таких соотношений (в форме дифференциальных уравнений) достаточно, чтобы полностью описать поля. Именно в такой форме законы электродинамики и выглядят особенно просто.

Фиг. 1.2. Векторное поле, пред­ставленное линиями, касательны­ми к направлению векторного поля в каждой точке.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука