Наш изящный результат — уравнение (4.32) — был доказан для отдельного точечного заряда. А теперь допустим, что имеются два заряда: заряд
(4.33)
Поток при наличии двух зарядов — это поток, вызванный одним зарядом, плюс поток, вызванный другим. Если оба находятся снаружи
Этот результат представляет собой важный общий закон электростатического поля, и называется он теоремой Гаусса,
(4.34)
или
(4.35)
где
(4.36)
Из нашего вывода видно, что закон Гаусса вытекает из того факта, что показатель степени в законе Кулона в точности равен двум. Поле с законом 1/r3, да и любое поле 1/rn с n№2, не привело бы к закону Гаусса. Значит, закон Гаусса как раз выражает (только в другой форме) закон сил Кулона, действующих между двумя зарядами. Действительно, отправляясь от закона Гаусса, можно вывести закон Кулона. Оба они совершенно равноценны до того момента, пока силы между зарядами действуют радиально.
Теперь мы хотим записать закон Гаусса на языке производных. Чтобы это сделать, применим его к поверхности бесконечно малого куба. В гл. 3 мы показали, что поток Е из такого куба равен дивергенции С·Е, помноженной на объем
или
(4.38)
Дифференциальная форма закона Гаусса — это первое из наших фундаментальных уравнений поля в электростатике, уравнение (4.5). Мы теперь показали, что два уравнения электростатики (4.5) и (4.6) эквивалентны закону силы Кулона. Разберем один пример применения закона Гаусса (другие примеры будут рассмотрены позже).
§ 7. Поле заряженного шара
Одной из самых трудных задач, которую пришлось нам решать, когда мы изучали теорию гравитационного притяжения, было доказать, что сила, создаваемая твердым шаром на его поверхности, такая же, как если бы все вещество шара было сконцентрировано в его центре. Много лет Ньютон не решался обнародовать свою теорию тяготения, так как не был уверен в правильности этой теоремы. Мы доказали ее в вып. 1, гл. 13, взяв интеграл для потенциала и вычислив силу тяготения по градиенту. Теперь эту теорему мы можем доказать очень просто. Но на этот раз мы докажем не совсем ее, а сходную теорему для однородно заряженного электричеством шара. (Поскольку законы электростатики и тяготения совпадают, то то же доказательство может быть проведено и для поля тяготения.)
Зададим вопрос: каково электрическое поле Е в точке
Ф
Закон Гаусса утверждает, что этот поток равен суммарному заряду сферы
или
(4.39)
а это как раз та формула, которая получилась бы для точечного заряда Q
§ 8. Линии поля; эквипотенциальные поверхности
Теперь мы собираемся дать геометрическое описание электростатического поля. Два закона электростатики: один — о пропорциональности потока и внутреннего заряда и другой — о том, что электрическое поле есть градиент потенциала, могут также быть изображены геометрически. Мы проиллюстрируем это двумя примерами.