Это так удивило Гаусса и Вебера, построившего впервые гальванометр, что они попытались определить, как далеко распространяются силы по проволоке. Они протянули проволоку поперек всего города, и один ее конец Гаусс присоединил к батарее (батареи были известны раньше генераторов), а Вебер наблюдал, как сдвигается стрелка гальванометра. И они обнаружили способ передавать сигналы на большое расстояние — это было рождение телеграфа! Разумеется, здесь нет прямого отношения к индукции, здесь речь шла о способе передачи тока по проволоке, о том, действительно ли ток продвигается за счет индукции или нет.
Предположим теперь, что в установке, изображенной на фиг. 16.2, мы проволоку оставляем в покое, а двигаем магнит. И снова наблюдаем эффект на гальванометре. Фарадей еще обнаружил, что движение магнита под проволокой (один способ) вызывает такой же эффект, как и движение проволоки над магнитом (другой способ). Но когда движется магнит, то на электроны проволоки уже больше не действует сила v X В. Это и есть то новое явление, которое открыл Фарадей. Сегодня мы можем попытаться понять его с помощью принципа относительности.
Мы уже поняли, что магнитное поле магнита возникает за счет его внутренних токов. Поэтому мы ожидаем появления такого же эффекта, если вместо магнита на фиг. 16.2 взять катушку из проволоки, по которой течет ток. Если двигать провод мимо катушки, то гальванометр обнаружит ток, равно, как и в том случае, когда катушка движется мимо провода. Но существует и еще более удивительная вещь: если менять магнитное поле катушки
Всякий раз, когда через гальванометр в установке, показанной на фиг. 16.2 или 16.3, проходит ток, в проводе в каком-то одном направлении возникает результативное давление на электроны. В разных местах электроны могут толкнуться в разные стороны, но в одном направлении напор оказывается больше, чем в другом. Учитывать нужно только давление электронов, просуммированное вдоль всей цепи. Мы называем этот результирующий напор электронов
Обратимся снова к простому прибору, изображенному на фиг. 16.1, только теперь не будем пропускать ток через проволоку, чтобы придать ей вращение, а будем крутить рамку с помощью внешней силы, например рукой или с помощью водяного колеса. При вращении рамки ее провода движутся в магнитном поле, и мы обнаруживаем в цепи рамки э. д. с.
Мотор превратился в генератор.
Индуцированная э. д. с. возникает в катушке генератора за счет ее движения. Величина э. д. с. дается простым правилом, открытым Фарадеем. (Сейчас мы просто сформулируем это правило, а несколько позднее разберем его подробно.) Правило такое: если магнитный поток, проходящий через петлю (этот поток есть нормальная составляющая В, проинтегрированная по площади петли), меняется со временем, то э. д. с. равна скорости изменения потока. Мы будем в дальнейшем называть это «правилом потока». Вы видите, что, когда катушка на фиг. 16.1 вращается, поток через нее изменяется. Вначале, скажем, поток идет в одну сторону, а когда катушка повернется на 180°, тот же поток идет сквозь катушку по-другому. Если непрерывно вращать катушку, поток сначала будет положительным, затем отрицательным, потом опять положительным и т. д. Скорость изменения потока должна тоже меняться. Следовательно, в катушке возникает переменная э. д. с. Если присоединить два конца катушки к внешним проводам через скользящие контакты, которые называются контактными кольцами (просто, чтобы провода не перекручивались), мы получаем генератор переменного тока.
А можно с помощью скользящих контактов устроить и так, чтобы через каждые пол-оборота соединение между концами катушки и внешними проводами становилось противоположным, так что когда э. д. с. изменит свой знак, то и соединение станет противоположным. Тогда импульсы э. д. с. будут всегда толкать ток в одном направлении вдоль внешней цепи. Мы получаем так называемый генератор постоянного тока.