Читаем Feynmann 6 полностью

В уравнении IV (табл. 18.1) оба члена от источника погашаются и ротор В равен всегда нулю. Магнитного поля в нашем при­мере нет.

В качестве второго нашего примера рассмотрим магнитное поле провода, используемого для зарядки плоского конденсато­ра (фиг. 18.2). Если заряд Q на пластинах со временем изме­няется (но не слишком быстро), ток в проводах равен dQ/dt. Мы ожидаем, что этот ток создаст магнитное поле, которое окружает провод. Конечно, ток вблизи провода должен созда­вать обычное магнитное поле, оно не может зависеть от того, где идет ток.

Предположим, мы выбрали петлю Г1 в виде окружности с радиусом r (фиг. 18.2, а). Контурный интеграл от магнитного поля будет равен току I, деленному на e0с2. Мы имеем

(18.8)

Все это мы получили бы для постоянного тока, но резуль­тат не изменится, если учесть добавку Максвелла, потому что для плоской поверхности S внутри окружности электрического поля нет (считая, что провод очень хороший проводник). Поверхностный интеграл от dE/dt равен нулю.

Предположим, однако, что теперь мы медленно продвигаем кривую Г1 вниз. Мы будем получать всегда тот же самый резуль­тат до тех пор, пока не нарисуем кривую вровень с пластинами конденсатора

Фиг. 18.2. Магнитное поле вблизи заряжаемого конденсатора.

Тогда ток I будет стремиться к нулю. Исчезнет ли при этом магнитное поле? Это было бы очень странно. Давайте поглядим, что говорит уравнение Максвелла для кривой Г, которая представляет собой окружность радиуса r, плоскость которой проходит между пластинами конденсатора (фиг. 18.2, б). Контурный интеграл от В вокруг Г есть 2prB. Он должен быть равен производной по времени потока Е, проходящего сквозь плоскую поверхность круга S2. Этот поток Е, как мы знаем из закона Гаусса, должен быть равен

произведению 1/e0 на заряд Q на одной из пластин конденсатора. Мы имеем

(18.9)

Это очень хорошо. Результат тот же, что мы нашли в (18.8). Интегрирование по меняющемуся электрическому полю 'дает то же магнитное поле, что и интегрирование по току в проводе. Конечно, как раз об этом и говорит уравнение Максвелла. Легко видеть, что так должно быть всегда, если применить наши рас­суждения к двум поверхностям 81 и S'1, ограниченным одной и той же окружностью Г1 на фиг. 18.2, б. Сквозь S1 проходит ток /, но нет электрического потока. Сквозь S1 нет тока, но есть электрический поток, меняющийся со скоростью I/e0. То же поле В получится, если мы применим уравнение IV (табл. 18.1) к каждой поверхности.

Из нашего обсуждения добавки, введенной Максвеллом, у вас могло сложиться впечатление, что она добавляет немного — просто подправляет уравнения в согласии с тем, что мы уже ожидали. Это верно, пока мы рассматриваем уравнение IV само по себе, ничего особенно нового не появляется. Слова само по себе, однако, весьма важны. Небольшое изменение, введенное Максвеллом в уравнение IV в сочетании с другими уравнениями, на самом деле дает много нового и важного. Но прежде чем заняться этим вопросом, поговорим подробнее в табл. 18.1.

§ 3. Все о классической физике

В табл. 18.1 сведено все, что знала фундаментальная клас­сическая, физика, т. е. та физика, которая была известна до 1905 г. В одной этой таблице есть все. С помощью этих уравне­ний можно понять все достижения классической физики.

Прежде всего, мы имеем уравнения Максвелла, записанные как в расширенном виде, так и в короткой математической фор­ме. Затем есть сохранение заряда, которое даже записано в скобках, потому что сохранение заряда можно вывести из имеющихся полных уравнений Максвелла. Так что в таблице имеются даже небольшие излишки. Дальше мы записали закон для силы, поскольку все имеющиеся электрические и магнитные поля ничего не говорят нам до тех пор, пока мы не знаем, как они действуют на заряды. Однако, зная Е и В, мы можем найти силу, действующую на объект с зарядом q, который дви­жется со скоростью v. Наконец, имеющаяся сила ничего не говорит нам, пока мы не знаем, что происходит, когда сила ускоряет что-то; нам необходимо знать закон движения, кото­рый говорит, что сила равна скорости изменения импульса. {Помните? Об этом говорилось в начале курса.) Мы даже вклю­чили эффекты теории относительности, записав импульс в виде р=m0vЦ(1-v2/c2).

Но если мы действительно хотим законченности, нам сле­дует добавить еще один закон — закон тяготения Ньютона? и мы поставили его в конце.

Итак, в одной небольшой таблице мы собрали все фундамен­тальные законы классической физики, даже хватило места выписать их словами и еще с некоторым излишком. Это вели­кий момент. Мы покорили большую высоту. Мы на вершине К-2, мы почти подготовлены покорить теперь Эверест, т. е. квантовую механику.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука