Читаем Feynmann 6 полностью

затем оно подскакивает на мгновение и сразу же оса­живает назад. Если вы берете интеграл от этой h, умно­женной на какую-то функ­цию F, то единственное место, в котором вы получите что-то ненулевое,— это там, где h (t) подскакивало; и у вас получится значение F в этом месте на интеграл по скачку. Сам по себе интеграл по скачку не равен нулю, но после умножения на F он должен дать нуль. Значит, функция в том месте, где был скачок, должна оказаться нулем. Но ведь скачок можно было сделать в любом месте; значит, F должна быть нулем всюду.

Мы видим, что если наш интеграл равен нулю при какой угодно h, то коэффициент при h должен обратиться в нуль. Интеграл действия достигает минимума на том пути, который будет удовлетворять такому сложному дифференциальному уравнению:

На самом деле оно не так уж сложно; вы его уже встречали прежде. Это просто F=ma. Первый член — это масса, умно­женная на ускорение; второй — это производная от потен­циальной энергии, т. е. сила.

Итак, мы показали (по крайней мере для консервативной системы), что принцип наименьшего действия приводит к пра­вильному ответу; он утверждает, что путь, "обладающий мини­мумом действия,— это путь, удовлетворяющий закону Ньютона.

Нужно сделать еще одно замечание. Я не доказал, что это минимум. Может быть, это максимум. На самом деле это и не обязательно должен быть минимум. Здесь все так же, как в «принципе кратчайшего времени», который мы обсуждали, изучая оптику. Там тоже мы сперва говорили о «кратчайшем» времени. Однако выяснилось, что бывают положения, в кото­рых это время не обязательно «кратчайшее». Фундаментальный принцип заключается в том, чтобы для любых отклонений пер­вого порядка от оптического пути изменения во времени были бы равны нулю; здесь та же самая история. Под «минимумом» мы на самом деде подразумеваем, что в первом порядке малости изменения величины S при отклонениях от пути должны быть равны нулю. И это не обязательно «минимум».

Теперь я хочу перейти к некоторым обобщениям. В первую очередь всю эту историю можно было бы проделать и в трех измерениях. Вместо простого x я тогда имел бы x, у и z как функции t, и действие выглядело бы посложнее. При трехмер­ном движении вы должны использовать полную кинетическую энергию: (m/2), умноженное на квадрат всей скорости. Иначе говоря

Кроме того, потенциальная энергия теперь является функцией x, у и z. А что можно сказать о пути? Путь есть некоторая кривая общего вида в пространстве; ее не так легко начертить, но идея остается прежней. А как обстоит дело с h? Что ж, и h имеет три компоненты. Путь можно сдвигать и по x, и по у, и по z, или во всех трех направлениях одновременно. Так что h теперь вектор. От этого сильных усложнений не получается. Раз нулю должны быть равны лишь вариации первого порядка, то можно провести расчет последовательно с тремя сдвигами. Сперва можно сдвинуть h только в направлении x и сказать, что коэффициент должен обратиться в нуль. Получится одно уравнение. Потом мы сдвинем h в направлении у и получим второе. Затем сдвинем в направлении z и получим третье. Можно все, если угодно, проделать в другом порядке. Как бы то ни было, возникает тройка уравнений. Но ведь закон Ньюто­на — это тоже три уравнения в трех измерениях, по одному для каждой компоненты. Вам предоставляется самим убедить­ся, что это все действует и в трех измерениях (работы здесь не так много). Между прочим, можно взять какую угодно систему координат, полярную, любую, и сразу получить зако­ны Ньютона применительно к этой системе, рассматривая, что получится, когда произойдет сдвиг h вдоль радиуса или по углу, и т. д.

Метод может быть обобщен и на произвольное число частиц. Если, скажем, у вас есть две частицы и между ними действуют какие-то силы и имеется взаимная потенциальная энергия, то вы просто складываете их кинетические энергии и вычитаете из суммы потенциальную энергию взаимодействия. А что вы варьируете? Пути обеих частиц. Тогда для двух частиц, движу­щихся в трех измерениях, возникает шесть уравнений. Вы мо­жете варьировать положение частицы 1 в направлении x, в направлении у и в направлении z, и то же самое проделать с частицей 2, так что существует шесть уравнений. И так и должно быть. Три уравнения определяют ускорение частицы 1 через силу, действующую на нее, а три других — ускорение частицы 2 из-за силы, действующей на нее. Следуйте всегда тем же правилам игры, и вы получите закон Ньютона для про­извольного числа частиц.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука