Мы сказали, что если банка совершенно закрыта, то поля продолжают колебаться так же, как и раньше. Это не совсем так. Это было бы так, если бы стенки банки были идеальными проводниками. В реальной банке, однако, колеблющиеся токи, текущие по стенкам, могут из-за сопротивления материала терять энергию. Колебания полей постепенно замрут. Из фиг. 23.7 ясно, что там должны существовать сильные токи, связанные с электрическими и магнитными полями внутри полости. Из-за того, что вертикальное электрическое поле внезапно исчезает на верхнем и нижнем торцах банки, у него возникает там сильная дивергенция; значит, на внутренней поверхности банки должны появляться положительные и отрицательные заряды (фиг. 23.7, а). Когда электрическое поле меняет направление на обратное, должны менять знак и заряды, так что между верхним и нижним торцами банки должен течь переменный ток.
Фиг. 23.8. Подключение резонансной полости.
Вас может удивить наше открытие — обнаружение токов на боковых сторонах банки. А как же с нашим прежним утверждением, что ничего не изменится, если в области, где электрическое поле равно нулю, поставить эти боковые стенки? Вспомните, однако, что, когда мы впервые вставляли в конденсатор эти боковые стенки, верхняя и нижняя обкладки выступали за них, так что магнитные поля оказывались и снаружи нашей банки. И только когда мы отрезали выступающие за края банки части конденсатора, на внутренней части боковых стенок появились какие-то токи.
Хоть электрические и магнитные поля в абсолютно закрытой банке из-за потерь энергии постепенно исчезнут, можно сделать так, чтобы этого не было. Для этого надо провертеть в банке сбоку дырочку и понемножку подбавлять энергию, чтобы возмещать потери. Надо взять проволочку, просунуть ее через дырочку в банке и припаять ее к внутренней части стенки, чтобы получилась петля (фиг. 23.8). Если подсоединить эту проволочку к источнику высокочастотного переменного тока, то этот ток будет снабжать энергией электрическое и магнитное поля полости и поддерживать колебания. Это произойдет, конечно, лишь в том случае, если частота источника энергии совпадет с резонансной частотой банки.
Фиг. 23.9. Устройство для наблюдения резонанса в полости.
Фиг. 23.10. Кривая отклика, на частоту для резонансной полости.
Если частота у источника не та, то электрические и магнитные поля резонировать не будут и поля в банке окажутся слабенькими.
Резонансное поведение легко наблюдать, если в банке проделать другую дырку и продеть в нее другую петлю (фиг. 23.8). Изменяющееся магнитное поле, проходящее через эту вторую петлю, будет генерировать в ней э. д. с. индукции. Если теперь эту петлю соединить с внешним измерительным контуром, то токи в нем будут пропорциональными напряженности полей в полости. Представьте теперь, что входная петля нашей полости соединена с радиочастотным сигнал-генератором (фиг. 23.9). Сигнал-генератор состоит из источника переменного тока, частоту которого можно менять, поворачивая ручку на панели генератора. Соединим затем выходную петлю полости с «детектором» — прибором, измеряющим ток от выходной петли. Отсчеты на его шкале пропорциональны этому току. Если затем измерить ток на выходе как функцию частоты сигнал-генератора, то получится кривая, похожая на изображенную на фиг. 23.10. Ток на выходе невелик на всех частотах, кроме тех, которые близки к w0— резонансной частоте полости. Резонансная кривая очень похожа на ту, о которой говорилось в гл. 23 (вып. 2). Однако ширина резонанса меньше, нежели обычно получается в резонансных контурах, составленных из индуктивностей и емкостей; иначе говоря, Q (добротность) полости очень высока. Зачастую встречаются даже Q порядка 100 000 и выше, особенно если внутренние стенки полости сделаны из очень хорошо проводящего материала, например из серебра.
§ 4. Собственные колебания полости