Одно из наиболее необычных следствий квантовой механики состоит в том, что момент количества движения вдоль любой оси всегда оказывается равным целой или полуцелой доле h, причем какую бы ось вы ни взяли, это всегда будет так. Парадоксальность здесь заключается в следующем любопытном факте: если вы возьмете любую другую ось, то окажется, что компоненты относительно этой оси тоже будут взяты из того же самого набора значений. Однако оставим рассуждения до того времени, когда у вас наберется достаточно опыта и вы сможете насладиться тем, как этот кажущийся парадокс в конце концов разрешится.
Сейчас просто примите на веру, что у каждой атомной системы есть число j, называемое
Мы упомянули также, что магнитный момент любой простой атомной системы имеет то же самое направление, что и ее момент количества движения. Это справедливо не только для атомов или ядер, но и для элементарных частиц. Каждая элементарная частица обладает характерной для нее величиной j и своим собственным магнитным моментом. (Для некоторых частиц обе они равны нулю.) Мы понимаем под «магнитным моментом системы», что ее энергия в направленном по оси z магнитном поле для слабых полей может быть записана как — mz
DU=-mzB, (35.2)
с тем условием, что в этом выражении мы должны сделать подстановку
причем
Предположим, что мы взяли систему со спином j=3/2 В отсутствие магнитного поля у системы было бы четыре различных возможных состояния, соответствующих различным значениям
(Вспомните, что для любого расположения электронов магнитный момент всегда направлен противоположно моменту количества движения.)
Обратите внимание, что «центр тяжести» энергетических уровней на фиг. 35.1 один и тот же как в присутствии магнитного поля, так и без него. Заметьте также, что все расстояния от одного уровня до следующего для данной частицы в данном магнитном поле равны между собой. Расстояние между уровнями для данного магнитного поля
hwp=g(qe/2m)hB.
или
wp=g(qe/2m)B.
Величина
§ 2. Опыт Штерна — Герлаха
Факт квантования момента количества движения — вещь настолько удивительная, что мы поговорим немного об ее истории. Ученый мир был буквально потрясен, когда было сделано это открытие (даже несмотря на то, что это ожидалось теоретически). Первыми экспериментально наблюдали этот факт Штерн и Герлах в 1922 г. Если хотите, опыт Штерна и Герлаха можно рассматривать как прямое подтверждение квантования момента количества движения. Штерн и Герлах поставили эксперимент по измерению магнитного момента отдельных атомов серебра. Испаряя серебро в горячей печи и пропуская пары серебра через систему маленьких отверстий, они получали пучок атомов серебра. Этот пучок направлялся между полюсными наконечниками специального магнита (фиг. 35.2).
Идея заключалась в следующем. Если магнитный момент атомов серебра равен m, то в магнитном поле В, направленном по оси