Кстати, модуль сдвига должен быть положительным, иначе мы бы могли получить энергию от самопроизвольного сдвига кубика. Из уравнения (38.14) очевидно, что постоянная а должна быть больше -1. Теперь мы знаем, что
Фиг. 38.8. Растяжение без сокращения бокового размера.
Мы вычислим изменение размеров и подберем такие поперечные силы, чтобы ширина и высота оставались постоянными. Следуя обычным рассуждениям, мы получаем для трех напряжений
Но поскольку по условию Dlу и Dl
а подставляя (38.18) в (38.15), получаем
Это соотношение вы часто можете встретить «перевернутым» и с преобразованным квадратичным полиномом по
Когда вы удерживаете бока, модуль Юнга умножается на некоторую сложную функцию s. Из уравнения (38.19) можно сразу же увидеть, что множитель перед Y всегда больше единицы. Растянуть брусок, когда его бока удерживаются, гораздо труднее. Это означает также, что брусок
§ 3. Кручение стержня; волны сдвига
Обратимся теперь к более сложному примеру, когда различные части материала напряжены по-разному. Рассмотрим скрученный стержень — скажем, приводной вал какой-то машины или подвеску из кварцевой нити, применяемую в точных приборах. Из опытов с маятником кручения вы, по-видимому, знаете, что
На фиг. 38.9,
Фиг. 38.9. Кручение цилиндрического стержня (а), кручение цилиндрического слоя (б) и сдвиг любого маленького кусочка в слое (в).
Если мы хотим связать деформацию с тем, что уже известно, то стержень можно представить состоящим из множества цилиндрических оболочек и выяснить, что происходит в каждой из этих оболочек. Начнем с рассмотрения тонкого короткого цилиндра радиусом r
q=rj/L.
Поэтому напряжение сдвига
Напряжение среза равно тангенциальной силе DF, действующей на конец квадратика, поделенной на его площадь Dl/Dr (см. фиг. 38.9, б):
g=DF/DlDr.
Сила DF, действующая на конец такого квадратика, создает относительно оси стержня момент сил Dt, равный
Dt=rDF=rgDlDr. (38.22)
Полный момент t равен сумме таких моментов по всему периметру цилиндра. Складывая достаточное число таких кусков так, чтобы все Dl составляли 2pr, находим, что полный момент сил для
гg(2pr)Dr. (38.23)
Или, используя уравнение (38.21),
Мы получили, что жесткость t/j пустотелой трубы по отношению к кручению пропорциональна кубу радиуса r и толщине Dr и обратно пропорциональна его длине
Теперь представьте себе, что стержень сделан из целой серии таких концентрических труб, каждая из которых закручена на угол j (хотя внутренние
где интеграл берется от 0 до а — радиуса стержня. После интегрирования получаем
Если закручивать стержень, то его момент оказывается пропорциональным углу и