Заметьте, однако, что в (6.6) входит величина, Скобку До сих пор мы все свои результаты выражали с помощью чисел. Как же мы умудрялись избегать векторов? Забавно, что даже в обычной векторной алгебре F C·F=C·(ma). Получается уравнение, связывающее скалярные произведения и справедливое для Теперь вернемся к (6.1). Это уравнение справедливо при Может быть, вы в уравнении (6.8) уже нацелились и на j? Раз (6.8) справедливо при Вот он каков — великий закон квантовой механики! Этот закон утверждает, что если вы вставите любые два состояния c и j с обеих сторон, слева и справа, то опять § 2. Разложение векторов состояний Посмотрим на уравнение (6.8) еще раз; его можно рассматривать следующим образом. Любой вектор состояния |j> может быть представлен в виде линейной комбинации совокупности базисных «векторов» с подходящими коэффициентами, или, если угодно, в виде суперпозиции «единичных векторов» в подходящих пропорциях. Чтобы подчеркнуть, что коэффициенты < < Такое же уравнение можно написать и для всякого другого вектора состояния, скажем для |c>, но, конечно, с другими коэффициентами, скажем с где Представим, что мы начали бы с того, что в (6.1) абстрагировались бы от j. Тогда мы бы имели Вспоминая, что А теперь интересно вот что: чтобы обратно получить Это ничего не меняет. Объединяя с (6.10), получаем Вспомните, однако, что где, как вы помните, Единственная разница — что Может быть, стоит подчеркнуть, что в то время, как пространственные трехмерные векторы выражаются через Мы говорили также о том, что происходит, когда частицы проходят через прибор. Если мы выпустим частицы в определенном состоянии j, затем проведем их через прибор, а после проделаем измерение, чтобы посмотреть, находятся ли они в состоянии c, то результат будет описываться амплитудой Такой символ не имеет близкого аналога в векторной алгебре. (Он ближе к тензорной алгебре, но эта аналогия не так уж полезна.) Мы видели в гл. 3 [формула (3.32)], что (6.16) можно переписать так: Это пример двукратного применения основного правила (6.9). Мы обнаружили также, что если вслед за прибором Это опять-таки следует прямо из предложенного Дираком метода записи уравнения (6,9). Вспомните, что между Кстати говоря, об уравнении (6.17) можно рассуждать и иначе. Предположим, что мы рассуждаем о частице, попадающей в прибор Конечно, этого можно достичь, если взять что и определяет собой y. «Но оно не определяет собой y,— скажете вы,— оно определяет только < А раз это уравнение справедливо при всех г, то можно просто писать Теперь мы вправе сказать: «Состояние y — это то, что получается, если начать с j и пройти сквозь аппарат Еще один, последний пример полезных уловок. Начинаем опять с (6.17). Раз это уравнение соблюдается при любых c и j, то их обоих можно сократить! Получаем Что это значит? Только то, что получится, если вернуть на свои места j и c. В таком виде это уравнение «недокончено» и неполно. Если умножить его «справа» на |j>, то оно превращается в а это снова то же уравнение (6.22). В самом деле, мы бы могли просто убрать из (6.22) все Символ Оператор Все эти математические обозначения на самом деле ничего нового не вносят. Единственный резон, почему мы их ввели,— мы хотели показать, как пишутся обрывки уравнений, потому что во многих книжках вы встретите уравнения, написанные в неполном виде, и нет причин вам пугаться, увидев их. Если вы захотите, вы всегда сможете дописать те части, которых не хватает, и получить уравнение, связывающее числа. Оно будет выглядеть более привычно. Кроме того, как вы увидите, обозначения «брэ» и «кет» очень удобны. Прежде всего мы теперь сможем указывать состояния, задавая их вектор состояния. Когда мы захотим вести речь о состоянии с определенным импульсом р, то скажем: «состояние |р>». Или будем говорить о некотором произвольном состоянии |y>. Для единообразия мы всегда, говоря о состоянии, будем употреблять «кет» и писать |y>. (Конечно, этот выбор совершенно произволен; в равной мере мы могли бы остановиться и на «брэ» § 3. Каковы базисные состояния мира? Мы обнаружили, что всякое состояние в мире может быть представлено в виде суперпозиции (линейной комбинации с подходящими коэффициентами) базисных состояний. Вы вправе спросить, во-первых: Мы хотели бы чуть-чуть заглянуть вперед и немножко поговорить о том, каким скорей всего окажется общее квантовомеханическое описание природы — во всяком случае, каким оно будет, судя по нынешним физическим представлениям. Первым делом надо решиться на тот или другой выбор представления базисных состояний (всегда ведь возможны различные представления). Например, для частицы со спином 1/2 можно использовать плюс- и минус-состояния относительно оси А как обстоит дело с системами нескольких электронов? В этих случаях базисные состояния становятся сложнее. Пусть электронов пара. Во-первых, имеются четыре мыслимых состояния по отношению к спину: у обоих электронов спины вверх, или у первого вверх, а у второго вниз, или у первого вниз, а у второго вверх, или у обоих вниз. Кроме того, нужно указать, что у первого электрона импульс p1 а у второго импульс р2. Базисные состояния для двух электронов требуют указания двух импульсов и двух значков для спина. Для семерки электронов нужно указать семь пар таких чисел. Если же имеются протон и электрон, то нужно указать направление спина протона и его импульс и направление спина электрона и его импульс. По крайней мере, в каком-то приближении это так. То же и с протоном. Вопрос стоит так: есть ли у протона внутренние части? Должны ли мы описывать протон, задавая все мыслимые состояния протонов, мезонов или странных частиц? Мы этого не знаем. И даже хотя мы допускаем, что электрон прост и все, что можно о нем сказать,— это задать его импульс и спин, но ведь не исключена возможность завтра открыть наличие внутри электрона каких-то колесиков и шестеренок. А это будет означать, что наше представление неполно, или неверно, или неточно, так же как и представление атома водорода, описывающее только его импульс, было бы неполным, потому что оно пренебрегало бы тем фактом, что атом водорода может оказаться возбужденным изнутри. Если электрон тоже может оказаться возбужденным изнутри и превратиться еще во что-то, например в мюон, то его следовало бы описывать не простым заданием состояний новой частицы, а, вероятно, в терминах более сложных внутренних колесиков. В нерелятивистской квантовой механике, где энергии не очень высоки и где вы не затрагиваете внутреннего устройства странных частиц и т. п., вы можете делать весьма сложные расчеты, не заботясь об этих деталях. Вы можете просто остановиться на импульсах и спинах электронов и ядер и все будет в порядке. В большинстве химических реакций и других низкоэнергетических событий в ядрах ничего не происходит; они не возбуждаются. Дальше, если атом водорода движется медленно и если он спокойно стукается о другие атомы водорода и ничего внутри него не возбуждается, не излучается, никаких сложностей не происходит, а все остается в основном состоянии энергии внутреннего движения, — в этом случае вы можете пользоваться приближением, при котором об атоме водорода говорят как об отдельном предмете, или частице, не заботясь о том, что он Первой проблемой при описании природы является отыскание подходящего представления для базисных состояний. Но это только начало. Надо еще уметь сказать, что «случится». Если известны «условия» в мире в один момент, то мы хотим знать условия в более поздний момент. Значит, надо также найти законы, определяющие, как все меняется со временем. Мы теперь обращаемся ко второй части основ квантовой механики — к тому, как состояния меняются во времени. § 4. Как состояния меняются во времени Мы уже говорили о том, как отображать ход событий, где мы что-то пропускаем через прибор. Но самый привлекательный, самый удобный для рассмотрения «опыт» состоит в том, что вы останавливаетесь и ждете несколько минут, т. е. вы приготовляете состояние j и, прежде чем проанализировать его, оставляете его в покое. Быть может, вы оставите его в покое в каком-то электрическом или магнитном поле — все зависит от физических обстоятельств. Во всяком случае, какими бы ни были условия, вы от момента Как и всякая подобная амплитуда, она может быть представлена в той или иной базисной системе в виде Тогда Кстати, следует отметить, что матрица < Или, если пользоваться формой (6.28), ему нужно вычислить матрицу называемую Как анализировать S-матрицу, т. е. как указать законы для нее,— вопрос интересный. В релятивистской квантовой механике при высоких энергиях это делается одним способом, в нерелятивистской же квантовой механике — другим, более удобным. (Он годится и в релятивистском случае, но перестает быть таким удобным.) Состоит он в том, чтобы вывести Рассмотрим матрицу Иначе говоря, можно проанализировать любой интервал времени, если мы умеем анализировать последовательность промежуточных коротких интервалов. Мы просто перемножаем все куски; это и есть способ нерелятивистского анализа квантовой механики. Итак, задача состоит в том, чтобы узнать матрицу Здесь имеется в виду то же, что и в (6.25), а именно, что амплитуда обнаружить Поскольку мы еще не очень хорошо разбираемся в этих абстрактных вещах, то давайте спроецируем наши амплитуды в определенное представление. Умножая обе части (6.31) на < Можно также разложить и |y(t)> на базисные состояния и написать Понять это можно так. Если через Тогда (6.34) можно записать так: Вот как будет выглядеть динамика квантовой механики. Нам пока мало известно об Однако обычно по историческим и по иным причинам из коэффициентов (- Это, разумеется, то же самое, что и (6.36). Если угодно, это просто определение коэффициентов Подставляя в (6.35) этот вид Суммируя члены с d или Вы помните, что (Нужно сказать, что мы всегда будем выбирать совокупность базисных состояний, которые фиксированы и со временем не меняются. Иногда используют такие базисные состояния, которые сами меняются. Однако это все равно, что пользоваться в механике вращающейся системой координат, а мы не хотим входить в подобные тонкости.) § 5. Гамилътонова матрица Идея, стало быть, заключается в том, что для квантовомеханического описания мира нужно выбрать совокупность базисных состояний Коэффициенты У гамильтониана есть одно свойство, которое выводится сразу же: Это следует из того, что полная вероятность пребывания системы что не должно меняться со временем. Если это обязано выполняться для любого начального условия j, то уравнение (6.40) тоже должно соблюдаться. В качестве первого примера возьмем случай, когда физические условия не меняются со временем; мы имеем в виду Только одно уравнение — и все! Если Так зависит от времени состояние с определенной энергией Вслед за этим, чтобы еще лучше разобраться в смысле уравнений, рассмотрим систему с двумя базисными состояниями. Тогда (6.39) читается так: Если все § 6. Молекула аммиака Теперь мы хотим продемонстрировать, как динамическое уравнение квантовой механики может быть использовано для описания какой-то физической обстановки. Мы выбрали интересный и простой пример, в котором, сделав некоторые разумные предположения о гамильтониане, сможем вывести кое-какие важные (и даже практически важные) результаты. Возьмем случай, когда достаточно двух состояний,— это молекула аммиака. Молекулу аммиака образуют один атом азота и три атома водорода, плоскость которых проходит мимо атома азота, так что молекула имеет форму пирамидки (фиг. 6.1, Эта молекула, как и всякая другая, обладает бесконечным количеством состояний. Она может вращаться вокруг какой угодно оси; двигаться в любом направлении, вибрировать и т. д. и т. п. Значит, это вовсе не система с двумя состояниями. Но мы сделаем следующее приближение: предположим, что все прочие степени свободы закреплены и не связаны с теми, которые нас сейчас интересуют. Будем считать, что молекула может только вращаться вокруг оси симметрии (как показано на рисунке), что импульс ее переносного движения равен нулю и что ее колебания очень слабы. Это фиксирует все условия, кроме одного: Но вот что интересно: если известно, что молекула в определенный момент была в определенном состоянии, то в следующий момент она может уже Единственная трудность в том, что мы не знаем, что ставить вместо коэффициентов Эти уравнения легко решить; получается Это просто амплитуды Но (6.45) не отражает того, что на самом деле бывает с аммиаком. Оказывается, что аммиак имеет возможность протолкнуть свой азот мимо трех водородов и перебросить его по ту сторону. Это очень трудно: чтобы азоту пройти полпути, нужна немалая энергия. Как же он может пройти на другую сторону, если он не располагает достаточной энергией? Просто имеется Эти уравнения достаточно просты и могут быть решены разным путем. Удобно решать их так. Складывая их, получаем с решением Вычитая затем (6.47) из (6.46), получаем что дает Две постоянные интегрирования мы обозначили Они отличаются только знаком при втором слагаемом. Решения-то мы получили, но что они значат? (В квантовой механике трудность не только в том, чтобы получить решения но и в том, чтобы разобраться в их смысле!) Заметьте, что при Имеется другое допустимое стационарное состояние, когда а=0; тогда обе амплитуды обладают частотой Мы приходим к заключению, что Теперь поставим следующий вопрос. Пусть мы Значит, Это можно переписать так: Величина обеих амплитуд гармонически изменяется во времени. Вероятность того, что молекула будет обнаружена в состоянии |2> в момент Она, как и следует, начинается с нуля, растет до единицы и затем колеблется вперед и назад между нулем и единицей, как показано на кривой, обозначенной Вероятность остаться в состоянии |1> тоже, конечно, не остается равной единице. Она «перекачивается» во второе состояние до тех пор, пока вероятность увидать молекулу в первом состоянии не обратится в нуль, как показано на кривой Еще раньше мы видели, что бывает, если качаются два одинаковых маятника, слегка связанные друг с другом [см. гл.49 (вып.4)]. Когда мы отводим в сторону один из них и отпускаем, он колеблется, но затем постепенно начинает колебаться другой и вскоре забирает себе всю энергию. Затем процесс обращается, и энергию отбирает первый маятник. В точности то же самое происходит и здесь. Скорость, с какой происходит обмен энергией (быстрота просачивания «колебаний»), зависит от связи между маятниками. Кроме того, как вы помните, при двух маятниках существуют два определенных типа движений (каждый с определенной частотой), которые мы назвали фундаментальными типами колебаний. Если отклонить оба маятника вместе, они колеблются с одной частотой. Если же отклонить один в одну сторону, а другой — в другую, то появляется иной стационарный тип колебаний и тоже с определенной частотой. С тем же мы встретились и сейчас — молекула аммиака математически походит на пару маятников. Существуют две частоты Сходство с маятником ненамного глубже принципа, что у одинаковых уравнений и решения одинаковы. Линейные уравнения для амплитуд (6.39) очень похожи на линейные уравнения для гармонических осцилляторов. (В действительности именно этой причине обязана успехом наша классическая теория показателя преломления, в которой квантовомеханический атом мы заменяли гармоническим осциллятором, хотя классически неразумно говорить об электронах, циркулирующих вокруг ядра.) Толкнув атом азота в одну сторону, вы получите Расщепление уровней энергии молекулы аммиака имеет важные практические применения, которые мы опишем в следующей главе. Наконец-то у нас будет пример практической физической задачи, которую мы сможем понять при помощи квантовой механики!