4.441. Ясно, что комплексу знаков "Л" и "И" не соответствует никакой объект (или комплекс объектов); не более чем горизонтальными вертикальным линиям или скобкам соответствуют какие-либо объекты. Не существует "логических объектов". Аналогично, конечно, и для всех знаков, выражающих то же самое, что и схемы "И" и "Л".
4.442. Так, например:
("Знак утверждения" Фреге "/-" логически полностью бессмыслен; он только указывает у Фреге (и у Рассела), что эти авторы считают отмеченные им предложения истинными. Поэтому "/-" является частью соединения предложений не более, чем, например, номер предложения. Предложение не может утверждать о самом себе, что оно истинно.)
Если последовательность возможностей истинности в схеме устанавливается правилом комбинации раз и навсегда, тогда уже одна последняя колонка является выражением условий истинности. Если мы напишем эту колонку в строчку, то пропозициональный знак будет:
"(ИИ-И} (р, q)" или еще яснее: "(ИИЛИ) (р, q)".
(Количество мест в левых скобках определяется количеством членов в правых.)
4.45. Для "n" элементарных предложений имеется Ln возможных групп условий истинности.
Группы условий истинности, принадлежащие к возможностям истинности некоторого числа элементарных предложений, могут упорядочиваться в ряд.
4.46. Среди возможных групп условий истинности имеется два предельных случая.
В первом случае предложение истинно для всех возможностей истинности элементарного предложения. Мы говорим, что условия истинности тавтологичны.
Во втором случае предложение ложно для всех возможностей истинности. Условия истинности противоречивы.
В первом случае мы называем предложение тавтологией, во втором — противоречием.
4.461. Предложение показывает то, что оно говорит, тавтология и противоречие показывают, что они ничего не говорят.
Тавтология не имеет условий истинности, потому что она безусловно истинна; а противоречие ни при каких условиях не истинно.
Тавтология и противоречие не имеют смысла. (Как точка, из которой две стрелки расходятся в противоположных направлениях.)
(Я не знаю, например, ничего о погоде, если я знаю, что дождь идет или что дождь не идет.)
4.4611. Но тавтология и противоречие не являются бессмысленными, они являются частью символизма, подобно тому как "О" есть часть символизма арифметики.
4.462. Тавтология и противоречие — не образы действительности. Они не изображают никакого возможного положения вещей, поскольку первая допускает любое возможное положение вещей, а второе не допускает никакого.
4.463. Условия истинности определяют область, которую предложение оставляет факту.
(Предложение, образ, модель напоминают в отрицательном смысле твердое тело, которое ограничивает свободу движения другого; в положительном смысле — пространство, ограниченное твердой субстанцией, в котором помещается тело.)
Тавтология оставляет действительности все бесконечное логическое пространство, противоречие заполняет все логическое пространство и ничего не оставляет действительности. Поэтому ни одно из них не может каким-либо образом определить действительность.
4.464. Истинность тавтологии несомненна; предложение возможно, противоречие невозможно.
(Несомненно, возможно, невозможно: здесь мы имеем указание той градации, которую мы употребляем в теории вероятностей.)
4.465. Логическое произведение тавтологии и предложения говорит то же самое, что и предложение. Следовательно, это произведение тождественно с этим предложением. Потому что нельзя изменить существа символа, не изменяя его смысла.
4.466. Определенной логической комбинации знаков соответствует определенная логическая комбинация их значений. Любая, же произвольная комбинация соответствует только несвязанным знакам.
Это означает, что предложения, которые истины для любого положения вещей, вообще не могут быть никакими комбинациями знаков, так как иначе им могли бы соответствовать только определенные комбинации объектов.
(И нет такой логической комбинации, которой не соответствует никакая комбинация объектов.)
Тавтология и противоречие являются предельными случаями комбинации знаков, а именно — их исчезновением.
4.4661. Разумеется, и в тавтологии, и в противоречии знаки также сочетаются друг с другом, т. е. они относятся друг к другу, но эти отношения незначимы, несущественны для символа.
4.5. Теперь, кажется, можно дать самую общую форму предложения, т. е. дать описание предложений некоторого знакового языка, так чтобы каждый возможный смысл мог выражаться символом, который подходит под это описание, и так чтобы каждый символ, подходящий под это описание, мог выражать смысл, если соответствующим образом будут выбраны значения имен.
Ясно, что при описании самой общей формы предложения может быть описано только ее существо — иначе она не была бы собственно самой общей формой.
То, что имеется общая форма предложения, доказывается тем, что не может быть ни одного предложения, чью форму нельзя было бы предвидеть (т. е. сконструировать). Общая форма предложения такова: "дело обстоит так-то и так-то".