В математических науках после создания Декартом и Ферма аналитической геометрии, на основе которой укрепилась идея о согласованности между собой различных частей математики, понятие модели было использовано для развития этой идеи. При этом моделью становится принятым обозначать теорию, которая обладает структурным подобием по отношению к другой теории. Две такие теории называются изоморфными, а одна из них выступает как модель другой, и наоборот (1, с. 6-7). <...>
С другой стороны, в науках о природе (астрономия, механика, физика, химия, биология) термин «модель» стал применяться в другом смысле, не для обозначения теории, а для обозначения того, к чему данная теория относится или может относиться, того, что она описывает. И здесь со словом «модель» связаны два близких друг к другу, хотя и несколько различающихся значения. Во-первых, под моделью в широком смысле понимают мысленно или практически созданную структуру, воспроизводящую ту или иную часть действительности в упрощенной (схематизированной или идеализированной) и наглядной форме <...> Подобные модели представляют собой существенный момент всякой исторически преходящей научной картины мира, и вопрос может заключаться в том, насколько научно обоснованы эти модели, каковы их функции, назначение, цель. Однако всегда модель в этом смысле выступает как некоторая идеализация, упрощение действительности, хотя самый характер и степень упрощения действительности, вносимые моделью, могут со временем меняться. При этом модель как составной элемент научной картины мира содержит и элемент фантазии, будучи продуктом творческого воображения, причем этот элемент фантазии в той или иной степени всегда должен быть ограничен фактами, наблюдениями, измерениями. В этом смысле говорили о моделях Г. Герц, М. Планк, Н.А. Умов и другие физики.
В несколько ином, более узком смысле термин «модель» применяют тогда, когда хотят изобразить некоторую область явлений с помощью другой, более хорошо изученной, легче понимаемой, более привычной, когда, другими словами, хотят непонятное свести к понятному. Так, физики XVIII в. пытались изобразить оптические и электрические явления посредством механических, рассматривая, например, свет как колебания «Эфирной материи» (Х. Гюйгенс) или поток корпускул (И. Ньютон) или же сравнивая электрический ток с течением жидкости по трубкам, движение молекул в газе с движением биллиардных шаров, строение атома со строением Солнечной системы («планетарная модель атома») и т.п.
Такое понятие модели сливается с понятием о физической аналогии как отношении сходства систем, состоящих из элементов разной физической природы, но обладающих одинаковой структурой. Часто такие модели называются моделями-аналогами или просто аналогами независимо от того, являются ли они воображаемыми или реальными.
Легко заметить, что во всех только что описанных случаях под моделью имеется в виду нечто глубоко отличное от теории. Если под теорией в данной связи понимается совокупность утверждений об общих законах данной предметной области, связанная воедино логически так, что из исходных посылок выводятся определенные следствия, то под моделью здесь имеют в виду либо а) конкретный образ изучаемого объекта (атом, молекула, газ, электрический ток, галактика и т.п ), в котором отображаются реальные или предполагаемые свойства, строение и другие особенности этих объектов, либо б) какой-то другой объект, реально существующий наряду с изучаемым (или воображаемый) и сходный с ним в отношении некоторых определенных свойств или структурных особенностей. Но как бы ни отличались эти два смысла, общим у них является то, что здесь модель означает некоторую конечную систему, некоторый единичный объект независимо от того, существует ли он реально или же является только в воображении. В этом смысле модель не теория, а то, что описывается данной теорий — своеобразный предмет данной теории (1, с. 6-9). <...>
Исходя из сказанного выше, мы принимаем для дальнейшего следующее исходное определение модели.
В модельном объяснении дедукция играет подчиненную роль, а главную роль играют аналогия и построение модели. В теоретическом же объяснении с его дедуктивной схемой модель отсутствует и единственным логическим орудием объяснения является дедукция. <...>