Читаем Философия Науки. Хрестоматия полностью

В математических науках после создания Декартом и Ферма аналитической геометрии, на основе которой укрепилась идея о согласованности между собой различных частей математики, понятие модели было использовано для развития этой идеи. При этом моделью становится принятым обозначать теорию, которая обладает структурным подобием по отношению к другой теории. Две такие теории называются изоморфными, а одна из них выступает как модель другой, и наоборот (1, с. 6-7). <...>

С другой стороны, в науках о природе (астрономия, механика, физика, химия, биология) термин «модель» стал применяться в другом смысле, не для обозначения теории, а для обозначения того, к чему данная теория относится или может относиться, того, что она описывает. И здесь со словом «модель» связаны два близких друг к другу, хотя и несколько различающихся значения. Во-первых, под моделью в широком смысле понимают мысленно или практически созданную структуру, воспроизводящую ту или иную часть действительности в упрощенной (схематизированной или идеализированной) и наглядной форме <...> Подобные модели представляют собой существенный момент всякой исторически преходящей научной картины мира, и вопрос может заключаться в том, насколько научно обоснованы эти модели, каковы их функции, назначение, цель. Однако всегда модель в этом смысле выступает как некоторая идеализация, упрощение действительности, хотя самый характер и степень упрощения действительности, вносимые моделью, могут со временем меняться. При этом модель как составной элемент научной картины мира содержит и элемент фантазии, будучи продуктом творческого воображения, причем этот элемент фантазии в той или иной степени всегда должен быть ограничен фактами, наблюдениями, измерениями. В этом смысле говорили о моделях Г. Герц, М. Планк, Н.А. Умов и другие физики.

В несколько ином, более узком смысле термин «модель» применяют тогда, когда хотят изобразить некоторую область явлений с помощью другой, более хорошо изученной, легче понимаемой, более привычной, когда, другими словами, хотят непонятное свести к понятному. Так, физики XVIII в. пытались изобразить оптические и электрические явления посредством механических, рассматривая, например, свет как колебания «Эфирной материи» (Х. Гюйгенс) или поток корпускул (И. Ньютон) или же сравнивая электрический ток с течением жидкости по трубкам, движение молекул в газе с движением биллиардных шаров, строение атома со строением Солнечной системы («планетарная модель атома») и т.п.

Такое понятие модели сливается с понятием о физической аналогии как отношении сходства систем, состоящих из элементов разной физической природы, но обладающих одинаковой структурой. Часто такие модели называются моделями-аналогами или просто аналогами независимо от того, являются ли они воображаемыми или реальными.

Легко заметить, что во всех только что описанных случаях под моделью имеется в виду нечто глубоко отличное от теории. Если под теорией в данной связи понимается совокупность утверждений об общих законах данной предметной области, связанная воедино логически так, что из исходных посылок выводятся определенные следствия, то под моделью здесь имеют в виду либо а) конкретный образ изучаемого объекта (атом, молекула, газ, электрический ток, галактика и т.п ), в котором отображаются реальные или предполагаемые свойства, строение и другие особенности этих объектов, либо б) какой-то другой объект, реально существующий наряду с изучаемым (или воображаемый) и сходный с ним в отношении некоторых определенных свойств или структурных особенностей. Но как бы ни отличались эти два смысла, общим у них является то, что здесь модель означает некоторую конечную систему, некоторый единичный объект независимо от того, существует ли он реально или же является только в воображении. В этом смысле модель не теория, а то, что описывается данной теорий — своеобразный предмет данной теории (1, с. 6-9). <...>

Исходя из сказанного выше, мы принимаем для дальнейшего следующее исходное определение модели. Под моделью понимается такая мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает нам новую информацию об этом объекте (1, с. 19). <...>

В модельном объяснении дедукция играет подчиненную роль, а главную роль играют аналогия и построение модели. В теоретическом же объяснении с его дедуктивной схемой модель отсутствует и единственным логическим орудием объяснения является дедукция. <...>

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже