Большая часть энергии уходит на чисто механический процесс — изменение скоростей сталкивающихся частиц (бомбардирующей частицы и частицы-мишени). После столкновения бомбардирующая частица теряет часть своей скорости, а неподвижная частица-мишень приобретает скорость и центр тяжести системы «бомбардирующая частица — частица-мишень» сдвигается в сторону удара. Вот на это перемещение центра тяжести (иными словами, на суммарное перемещение системы, состоящей из обеих столкнувшихся частиц, по отношению к ускорителю) и уходит большая часть энергии бомбардирующей частицы. При этом вместе с мощностью ускорителя растет и доля энергии, не используемая для тех процессов, наблюдение и изучение которых является задачей физики высоких энергий. В особенности это относится к столкновениям электронов. Если электрон, обладающий энергией 6 млрд, эв, сталкивается с неподвижным электроном, то около 5,94 млрд, эв уходит на смещение центра тяжести электронов по отношению к ускорителю.
Смещение центра тяжести не произойдет, если частицы — в данном случае электроны — движутся навстречу друг другу. При этом каждая частица может рассматриваться и как бомбардирующая частица, и как частица-мишень. Метод встречных пучков позволяет экспериментировать с частицами равной массы и может во много раз увеличить полезную энергию. Если бы, например, ускоритель электронов на встречных пучках придавал частицам полезную энергию порядка 12 млрд, эв, то при неподвижной мишени для этого понадобилась бы фантастическая мощность электронного ускорителя: он должен был бы сообщить электронам энергию порядка 100 триллионов эв.
Главная трудность реализации метода встречных пучков состоит в малой плотности той мишени, которой является пучок частиц. В неподвижной твердой мишени — кубике с ребром, равным 1 мм, находится 1020
атомов, а в самом интенсивном пучке это число в том же объеме в 108 раз меньше. Однако в последние годы появились идеи, которые позволяют надеяться на преодоление указанной трудности, приводящей к малой вероятности взаимодействия частиц во встречных пучках. Можно накоплять частицы с большой энергией, прошедшие десятки или сотни циклов в ускорителе в виде двух колец, имеющих общую часть, где накопленные частицы при каждом обороте вновь и вновь встречаются друг с другом. Накопление частиц высокой энергии и многократная встреча их увеличивают вероятность взаимодействия.Конечно, встречные пучки не смогут заменить системы с неподвижными мишенями при изучении взаимодействий разных частиц. Но для большого числа задач возможно широкое использование метода встречных пучков.
Упомянем далее разработанную в СССР схему
Принципиально новая схема получения частиц с очень высокой энергией была предложена В. И. Векслером в 1956 г. и приобрела практически выполнимую форму в 1968 г. Это использование сгустка электронов в пучке ускоряемых положительных ионов. Здесь на частицы действует не столько внешнее электрическое поле, сколько поля, возникающие между частицами с различными зарядами в одном пучке. Представим себе небольшую кольцевую камеру, в которой движется сгусток электронов. Затем в камеру вводят некоторое количество положительно заряженных ионов. Масса каждого из попов гораздо больше массы электрона. Поэтому, находясь в одном с электронами внешнем поле, ионы будут двигаться медленнее, чем электроны, и отставать от них. Но, если у нас достаточно плотный сгусток электронов, притяжение положительных ионов к отрицательным зарядам — электронам — преодолеет инерцию ионов и заставит их двигаться с той же скоростью, что и электроны. Энергия ионов пропорциональна их массе. Поэтому при движении электронов и ионов с одной скоростью энергия ионов будет очень большой. Каждый ион, находящийся в плотном электронном сгустке, испытывает ускоряющее воздействие поля, в тысячи раз большего, чем внешнее.
Устойчивость и компактность электронного сгустка достигаются, несмотря на взаимное отталкивание электронов, так как при движении электронов по параллельным траекториям их отталкивание уменьшается.
Реализация этой идеи представляется в виде кольцевого сгустка электронов в магнитном поле, которое, увеличиваясь, делает этот сгусток очень небольшим по размерам (порядка дециметра) и очень тонким (диаметр сечения около двух миллиметров). Далее в этот сгусток вводятся положительные ионы, и сгусток как целое ускоряется внешним электрическим полем в направлении его оси, пока ионы не приобретут заданной энергии в тысячу и даже в несколько тысяч миллиардов электронвольт.