Новые звезды вспыхивают часто — около ста в год в Галактике, а сверхновые появляются в больших галактиках в среднем раз в течение столетия. В нашей Галактике последняя вспышка сверхновой произошла в 1604 г. Теперь, когда можно наблюдать множество галактик (причем воспринимать и измерять не только оптическое излучение), накопилось довольно много наблюдений, проливающих свет на природу вспышек сверхновых. Можно думать, что сверхновые возникают иногда из звезд, претерпевших уже длительную эволюцию, а иногда из молодых весьма массивных звезд, превышающих вдвое и больше массу Солнца. Они образуют при взрыве газовые туманности, отличающиеся высокой радиоактивностью и мощным оптическим и рентгеновским излучением. В. Л. Гинзбург и И. С. Шкловский считают вспышки сверхновых основным источником космических лучей. Проблема происхождения космических лучей — одна из основных астрофизических проблем, решение которых должно быть запроектировано на конец столетия. В этом отношении внеземные наблюдения с космических кораблей, с поверхности Луны и планет земной группы позволят точнее определить состав первичных космических лучей, не измененный взаимодействием с земной атмосферой.
Природа сверхновых еще далеко не выяснена, и то, что сейчас о ней говорят, представляет собой лишь первоначальные гипотезы, иллюстрирующие характер астрофизических проблем, которые будут решаться в конце столетия. Возможно, в течение этого времени будет подтверждена мысль о взрыве, вызванном гравитационным сжатием под действием сил, соответствующих эйнштейновскому закону тяготения. Эта мысль очень характерна для современной астрофизики, ее тенденций и перспектив.
Мы уже говорили о «белых карликах», т. е. сравнительно устойчивых финальных состояниях звезд с массой не больше 1,2 массы Солнца. У звезд с большей массой давление электронного газа недостаточно, чтобы противостоять гравитационному сжатию, последнее продолжается, и звезда уменьшается до размеров порядка 10 км, приобретая фантастическую плотность, превышающую плотность атомного ядра, т. е. 100 млн. тонн в кубическом сантиметре. При такой плотности свободные электроны присоединяются к протонам, протоны захватывают их, превращаясь в нейтроны, и звезда оказывается состоящей из тесно сдавленных нейтронов. В сверхплотном состоянии уже не существует сложных атомных ядер. Зато здесь могут существовать элементарные частицы тяжелее нуклонов; эти частицы не распадаются при столь высокой плотности.
До определенных пределов упругость сверхплотного вещества может противостоять дальнейшему гравитационному сжатию. Если нейтронная звезда не превышала своей массой двух масс Солнца или потеряла избыточную массу, она будет постепенно остывать. Существование нейтронных звезд пока не доказано. В прогнозы астрофизики, в число предстоящих возможных открытий входит открытие нейтронных звезд при наблюдении нейтрино, т. е. незаряженных частиц с нулевой массой покоя, излучение которых должно сопровождать гипотетические реакции в этих звездах. Быть может, нейтронные звезды будут обнаружены по их рентгеновскому излучению. Быть может, они уже обнаружены?