Читаем Философия оптимизма полностью

Такая эволюция гарантируется переходом к новым конструкциям и новым технологическим процессам. Может ли кибернетика взять на себя решение такой задачи? Здесь нужно прежде всего устранить возможные недоразумения. Речь ни в коем случае не идет о реальном воплощении машины Джона фон Неймана, т. е. кибернетической машины, которая воспроизводит себя в виде серии машин с теми же параметрами. Речь не идет и о кибернетическом конструкторе, который вытеснит живого конструктора. Речь идет о том, что живой конструктор будет пользоваться кибернетическими машинами, которые очень быстро (во временной шкале конструкторской работы — практически мгновенно) будут находить конкретные параметры, соответствующие каждому новому варианту разрабатываемого нового агрегата, будут вычислять эффект каждого варианта, сопоставлять их друг с другом и находить оптимальный. Не так уж существенно, сколько живых конструкторов будут пользоваться помощью кибернетических машин. Существенно другое. Темп конструкторской работы и разработка новых технологических процессов увеличатся во много раз. Технический прогресс станет непрерывным, даже если брать отдельные отрасли производства и наблюдать их эволюцию в течение сравнительно небольших интервалов времени.

Когда речь идет о производстве и эволюции его технических и технико-экономических показателей, понятие непрерывности имеет специфический смысл. Меняются статистически усредненные величины, усредненные, например, для всего производства в целом. С такой оговоркой (для производства в целом) уже в первой половине нашего столетия технический уровень поднимался в некоторые периоды непрерывно. Теперь кибернетика, примененная в конструкторских бюро, технологических лабораториях и проектных институтах, позволяет достичь непрерывного технического прогресса не только в производстве в целом, но и в отдельных отраслях.

Радикальный поворот в ходе технического прогресса — это переход от непрерывного повышения уровня техники к непрерывному ускорению этого процесса. О нем уже говорилось в главе: «Почему 2000-й». Основа такого ускорения — появление все новых идеальных физических и химических схем, приближение к которым и составляет самую сущность технического прогресса. От чего зависит появление новых идеальных схем, т. е. прогресс науки в областях, непосредственно связанных с прикладными проблемами? Темп научного прогресса в этих областях зависит от обратной связи, от применения результатов исследований в производстве, от фундаментальных исследований, которые сами по себе, непосредственно не дают прикладных результатов, от скорости передачи научной информации и в очень большой степени от скорости сопоставления теоретических выводов с экспериментом. Кибернетика фигурирует во всех этих ускоряющих научный прогресс факторах. Мы остановимся только на последнем — на скорости экспериментальной проверки теоретических выводов. При современной математизации почти всех отраслей науки путь от некоторой теоретической концепции до выводов, которые могут стать предметом экспериментальной проверки, включает в большинстве случаев длинные ряды вычислений. Иногда они требуют от вычислителей месяцев и даже лет труда. Машины выполняют такие вычисления в течение минут. Применение вычислительной техники — одно из оснований, чтобы проектировать на последние десятилетия XX в. практически непрерывный поток новых физических и химических схем, которые будут целевыми схемами технического прогресса.

Научный прогресс определяет своей скоростью не скорость, а ускорение технического прогресса. Последний может обладать некоторой скоростью и быть практически непрерывным и при неизменных идеальных схемах, к которым стремится техническое творчество, конструкторская и технологическая мысль. Если непрерывно меняются сами идеальные схемы, то технический прогресс приобретает непрерывное ускорение.

Можем ли мы наметить еще большую динамизацию производства и предусмотреть возрастание самого ускорения прогресса? Об этом уже говорилось выше. Пока мы не пойдем так далеко. Для такого темпа технического прогресса нужно, чтобы само научное творчество все с большей скоростью, т. е. с ускорением, приближалось к своим идеалам, чтобы сами идеалы науки были подвижными. Что такое «идеалы науки»? Приобрели ли они подвижность? Приобретут ли ее в будущем? На эти вопросы придется вскоре ответить. Пока заметим, что размышления о конечных идеалах научного познания не станут в обозримом будущем функцией кибернетического устройства, хотя они и будут в растущей степени опираться на вычисления и наблюдения, производимые электронными машинами. Фигура кибернетического робота, размышляющего о фундаментальных принципах и идеалах науки, остается фантастической по крайней мере для XXI в. Но об этих принципах и идеалах — позже.

Перейти на страницу:

Похожие книги

Философия символических форм. Том 1. Язык
Философия символических форм. Том 1. Язык

Э. Кассирер (1874–1945) — немецкий философ — неокантианец. Его главным трудом стала «Философия символических форм» (1923–1929). Это выдающееся философское произведение представляет собой ряд взаимосвязанных исторических и систематических исследований, посвященных языку, мифу, религии и научному познанию, которые продолжают и развивают основные идеи предшествующих работ Кассирера. Общим понятием для него становится уже не «познание», а «дух», отождествляемый с «духовной культурой» и «культурой» в целом в противоположность «природе». Средство, с помощью которого происходит всякое оформление духа, Кассирер находит в знаке, символе, или «символической форме». В «символической функции», полагает Кассирер, открывается сама сущность человеческого сознания — его способность существовать через синтез противоположностей.Смысл исторического процесса Кассирер видит в «самоосвобождении человека», задачу же философии культуры — в выявлении инвариантных структур, остающихся неизменными в ходе исторического развития.

Эрнст Кассирер

Культурология / Философия / Образование и наука