Попытаемся несколько развить и конкретизировать эти беглые замечания об информации в атомном веке. Прежде всего несколько слов о взаимодействии информации «знаю как» и информации «знаю где». Это взаимодействие довольно сложное, оно иногда включает обратную связь. Информация о ресурсах (информация «знаю где») может быть аргументом для изменения технической политики, для изменения технологии и соответственных поисков новой информации «знаю как». Но чаще информация «знаю как» играет роль независимого переменного.
Близость понятий информации и негэнтропии видна очень явственно и в «знаю как», и в «знаю где». Если даже придавать информации традиционный смысл, то все равно информация в обоих случаях — это информация о негэнтропии, о какой-то макроскопической упорядоченности. Возьмем ядерную энергию. Она представляет собой по своему происхождению, по своей физической природе энергию связи нуклонов в атомном ядре. Существование атомных ядер, объединение элементарных частиц в эти более сложные структуры, представляет собой некоторую негэнтропию, некоторую упорядоченность бытия.
Само деление ядер — энтропийный процесс, но он создает промежуточные формы негэнтропии, прежде всего температурные перепады.
Любая энергетическая система использует некоторый запас негэнтропии. Классическая энергетика в последнем счете пользуется температурным перепадом между Солнцем и Землей. Неклассическая энергетика — энергетическим перепадом между степенями концентрации энергии в различных ядрах, различиями в «упаковочном коэффициенте», в удельной энергии связи. Эти перепады, эти формы негэнтропии образовались, когда появились различные элементы периодической системы.
Информация о ядерных реакциях включила на некотором этапе сведения о превращении тория в уран-233, что дает возможность строить реакторы-размножители на тории. Такое приращение информации «знаю как» вызвало интерес к оценке запасов тория и к уточнению этих оценок. Тория оказалось много, и это стимулировало дальнейшие исследования и строительство опытных размножителей на тории. Возможность их применения расширяет программу дальнейших поисков тория и в значительной мере снимает проблему истощения запасов урана и на длительный срок — всю проблему исчерпания ресурсов ядерного горючего.
Термоядерные реакции изменили бы еще радикальнее проблему этих ресурсов. Для термоядерного синтеза нужен дейтерий. Здесь проблема «знаю где» даже не ставится. В обычной воде дейтерий содержится в сравнительно постоянной концентрации, его содержание в воде — одна часть на семь тысяч частей, около 0,014 %.
Уже сейчас или, вернее, в ближайшие десятилетия могут существенно уменьшиться абсолютные расходы на разведку новых топливных ресурсов для «классических» станций в связи со снижением стоимости энергии на атомных станциях.* Классические станции, использующие богатые и легкодоступные месторождения топлива, будут в течение какого-то срока успешно выдерживать конкуренцию атомных станций. Но новые станции в районах, где их постройка требует предварительных поисковых работ, окажутся, по всей вероятности, нерентабельными.
Это не уменьшит объема информации «знаю где», но изменит направление ее потоков. Атомная энергетика сделает более широкими поиски сырья. Конечно, и здесь возможно будет отказаться от поисков малоизвестных в смысле их местонахождения ресурсов сырья, если это сырье может быть заменено другим. Химия развивается в направлении, которое обещает в пределе получать все из всего или по крайней мере знать, как это делается. Из всех вариантов, число которых быстро растет, будут выбирать, да и сейчас уже выбирают варианты, гарантирующие наименьшие затраты. Такие варианты, видимо, охватят в качестве исходного сырья все или почти все элементы периодической системы.
При этом будут использоваться и многие бедные месторождения. Проблема относительного истощения сырьевых ресурсов, как уже говорилось, — энергетическая проблема. Переход к бедным месторождениям — это переход к большим затратам энергии на то же количество добываемого сырья. Изучение недр для поисков большинства содержащихся в них минералов, изучение, охватывающее все районы, меняет стиль информации «знаю где», приближает эту информацию к фундаментальным естественнонаучным знаниям.
Здесь мы сталкиваемся с одной из самых важных особенностей науки конца XX столетия. Энергетика атомного века использует процессы, происходящие в ядерных масштабах. Квантовая электроника использует частоты, приближающие исследователя к минимальным простран ственно-временным областям. Кибернетика еще далека от ядерных масштабов, но она уже использует процессы, происходящие в течение миллионных долей секунды, а будет использовать процессы, происходящие в течение миллиардных долей. Чем в меньшие пространственно-временные области проникает исследователь, чем в меньших пространственно-временных ячейках он находит и устанавливает негэнтропию, тем ближе он к проблемам, которые в это время представляются фундаментальными.