Математические исследования, которые я не могу здесь подробно воспроизводить, показывают, что версию эмпирического происхождения математики невозможно отстаивать до конца. Вместе с тем отказ от этой версии, по-видимому, неизбежно заставит нас перейти на позиции платонизма. Однако дело можно представить так, что математика «не содержит» в себе ни чувственно воспринимаемый мир, ни индивидуальный мозг. Зато ее «содержит в себе» язык как таковой, но содержит таким образом, что она как бы «скрыта» от тех, кто им пользуется. Математика в таком случае рождается одновременно с языком, будучи укоренена в сфере его флективных уровней и ограничена их закономерностями и структурой языкового синтаксиса. Доказана принципиальная возможность создания систем (машин), способных к самовоспроизводству. Но это доказательство, впервые предложенное Дж. фон Нейманом, ничего не говорит о том, что такие машины-«прокреаторы» с необходимостью должны по своей сложности превосходить некоторый определенный порог. Дело в том, что неймановское доказательство не стоит ни в каком доступном определению отношении к феноменалистским тезисам термодинамики и прежде всего к законам энтропии. Термодинамический принцип, запрещающий такие состояния сравнительно простых систем, когда те не только могут в информационном плане не деградировать, но наоборот, способны создавать системы более сложные, чем они сами, — этот принцип выступает в области физики главным возражением против возможности существования каких бы то ни было явлений, в которых происходит нечто термодинамически невозможное. А именно таковы типичные эволюционные явления. Необходимо предположить, что доказательство возможности автопрокреации должно быть дополнено установлением ряда констант, определяющих порог сложности
, начиная с которого более сложные системы уже не подчинены закону обязательной «хаотизации», то есть возрастания энтропии, потому что становятся способными специфическим образом «кормиться» за счет окружающей среды. Они ассимилируют присутствующую в ней упорядоченность, чтобы ею подкрепить свою собственную. Замечу, что пользующиеся языком не отдают себе отчета в степени его сложности. Я не знаю соответствующих оценочных расчетов и не знаю, выполнял ли их кто-нибудь, но полагаю, что развитый язык, вполне активно функционирующий в своих дискурсах, близок в чисто структурном отношении, по исчислению своей сложности, к языку наследственной передачи информации. А этот последний уж наверняка переступил означенный порог сложности, о чем мы знаем из того, что сами существуем и что фактом является эволюция живого, в ходе которой из более простых состояний образуются более сложные. Этнический язык имело бы смысл рассматривать как очередной «рывок» эволюционного процесса в том аспекте, который касается преодоления «порога сложности». Математика возникает в рамках языка как некое «оперативное средство поддержки». Она не отображает структуру мира непосредственно, в плане эмпирических контактов индивидуума с миром, но опосредованно все же реализует такое отображение. В самом деле, наличные в языке механизмы, генерирующие математику, являются результатом активного стремления обобщать, которое, в свою очередь, возникает в языке в ходе его взаимодействия со средой. Тем не менее процессы «выявления», «призывания на помощь» математики не представляют собой непосредственного распознавания таких свойств среды, которые «прямо подводят» к математике (а такие свойства есть: например, исчислимость реальных объектов). Напротив, эти процессы являются «активным извлечением» из языка уже implicite содержащейся в нем математики, ее «выведением наружу», ее экстрагированием из языка. Поэтому нельзя создать язык, не создав одновременно и математику. Правда, она не обязательно будет именно той математикой, которую мы уже разработали и которой пользуемся — в ее исторически развившихся формах и в ее современном облике. Если направление развития математики уже на ранних стадиях отклонится от имевшего место у нас и от рано принятых нами принципов, то есть если у этого развития будут иные стартовые условия, тогда может развиться и какой-нибудь иной род математики. «Иной» — не в тривиальном смысле: тривиальные отличия ограничиваются, например, принятием двенадцатиричной системы записи чисел вместо десятичной. Иначе говоря, математика — результат работы, раскрывающей отношения, которые (в своей форме именно как отношений) не находятся ни в голове индивидуума, ни в мире, но только, во-первых, в том, что их раскрывает (в языке), и, во-вторых, в том, что через эти отношения раскрывается. Если так понимать математику, то она ни однозначно аналитична, ни синтетична, и уже просто ни в какой мере не сводима к единичным явлениям типа «контакта индивидуума с миром». Математическое суждение не исходит «просто из внешнего мира», следовательно, оно не синтетично. Вместе с тем оно не образует чистой тавтологии — следовательно, его нельзя вывести и из информационно бесплодного действия сингулярных механизмов сознания; поэтому оно не является и полностью аналитическим. Напротив, на эмпирической стадии того или иного действия, в вариациях состояний среды математическая операция находит себе — через свою эффективность — sui generis «подтверждение» своей корректности.