Читаем Философы Древней Греции полностью

Некоторое представление о степени развития математики в эпоху от Пифагора до Платона мы можем получить из текстов по геометрии, изложенных в книгах 1–5 «Элементов» Евклида, а эти книги – новая редакция более ранних пифагорейских трактатов по геометрии7. Кроме того, получить ответ нам помогают рассказы и некоторые теоремы. «Теорема Пифагора», предположительно открытая самим Пифагором, породила много легенд. Аристотель сообщает, что пифагорейцы знали и давали ученикам своей школы еще в начале учебы доказательство того, что диагональ единичного квадрата несоизмерима с этой стороной. Это доказательство, которое мы применяем до сих пор, показывает, что техника построения доказательств и способность при необходимости мыслить отвлеченно у пифагорейцев достигали очень высокого уровня8. Сообщения о том, что пифагорейцы отождествляли правильные геометрические тела с молекулами материального мира, говорят, что ученых этой школы интересовало применение математических методов к изучению твердых тел и применение математики к естественным наукам. Мы также обнаружим сообщение о «сите» – методе, позволявшем выбрать из последовательности чисел все простые числа, и своеобразные зачатки теории чисел.

Этих подсказок достаточно, чтобы стало очевидно, что речь идет действительно о качественно новом понимании формы. Теперь нам нужно рассмотреть философские последствия утверждения, что «числа – это вещи», которое обобщает эти новые представления. Может быть, мысль пифагорейцев станет яснее, если мы перефразируем эти слова и скажем «числа реальны», поскольку слово «вещи» в современном языке ассоциируется с материальными предметами, а это искажает смысл изречения. Но в каком смысле числа или формы реальны? Во-первых, они существуют независимо от наблюдателя: хотим мы того или нет, два плюс два всегда будет равно четырем, и два всегда будет четным простым числом. У них, в отличие от бесформенной или безграничной пустоты Анаксимандра, есть точные индивидуальные характеристики: каждое число является только самим собой. Числа – нечто общее для всех: они для всех наблюдателей одни и те же, в отличие от субъективных фантазий какого-либо человека или проходящих со временем впечатлений. Они системно связаны между собой. Всех этих свойств, кажется, достаточно для того, чтобы признать форму, число и соотношение чисел чем-то реальным. Но они реальны по-иному, чем материальные объекты: в отличие от них, числа не имеют ни прошлого, ни места в пространстве и существуют в мире, где нет ни движения, ни изменения. И числа видимы только уму: мы не можем коснуться их или смотреть на них, как смотрим на камень или ручей. Таким образом, перед философией возник, кроме мира физических реальностей, признанного милетцами, еще целый новый мир, который можно использовать9. И этот мир реально имел отношение к интересам и проблемам людей, поскольку его абстрактные соотношения и фигуры давали науке инструменты для познания природы10.

И все же у пифагорейцев, несмотря на отмечаемое иногда изящество доказательств и определений, числа были гораздо теснее связаны с воображением, чем наши сегодняшние абстрактные числа11. Пифагорейцы представляли себе числа как «группы единиц» (монад) и считали, что «естественный» способ записи чисел – изображение их в виде групп точек, при котором у каждого числа была собственная характерная для него естественная монадная структура. Этим способом мы до сих пор изображаем числа на домино и игральных костях, а ассоциативная связь между числами и пространственными фигурами сохранилась в современных терминах «квадратные» и «кубические» числа. Фактически в течение всего Средневековья «фигурные числа» были стандартным крупнейшим разделом арифметики. Школьники заучивали теоремы о том, что, например, суммы последовательных целых чисел «треугольны», то есть составляющие их числа можно изобразить в виде треугольника (как в «тетрактисе десятки» на схеме, которая приведена ниже). Эта смесь воображения и абстракции позволяла легко ассоциировать числа с формами и предметами. Например, изображение чисел в виде группы единиц предполагало какую-то связь между единицами в арифметике и точками пифагорейской геометрии, и некоторые члены пифагорейской школы пытались построить физический мир из пространственных точек.

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии