Читаем Физическая химия: конспект лекций полностью

Падение напряжения в контактах обычно принимают равным 5 – 10% от общего напряжения.

Падение напряжения в электродах:

Снижение напряжения на электрохимическом аппарате – оптимальное расстояние между электродами, максимальной электропроводностью.

Рис. 2

К энергетическим характеристикам относятся:

1) напряжение на электрохимическом аппарате;

2) отдача по напряжению.

3) отдача по емкости

4) отдача по энергии

5) производительность электрохимического аппарата оценивается количеством продукта на одной затраченной энергии.

Расход электрической энергии на 1 тонну произведенного продукта определяется так:

ВT выход по току в долях единицы.

Энергетический баланс – устанавливает соотношение между видом энергии, поступающей в электролизер, и энергией, уходящей из него, демонстрируя равенство статей прихода и расхода. Электроэнергия const тока, подводимая к электролизеру, составляет:

WЭЛ= UJt.

Общее уравнение энергетического баланса имеет следующий вид:

Wэ + Qприхода = Wэл.хим.р-ии + Wтока + Qрасх,

где Qприхода – тепловая энергия, поступающая в электролизер с электролитом и электродами за счет вторичных процессов;

Wэл.хим.р-ии – энергия тока, затраченная на электрохимическую реакцию;

Wтока – энергия тока, перешедшая в тепловую энергию; Qрасх– тепловая энергия, уносимая электролитом, электродами, газами при испарении Н2О, излучении и конвекции.

<p>3. Первый закон термодинамики. Калорические коэффициенты. Связь между функциями C<sub>P</sub> и C<sub>v</sub></p>

Формулировки первого закона термодинамики.

1. Общий запас энергии в изолированной системе остается постоянным.

2. Разные формы энергии переходят друг в друга в строго эквивалентных количествах.

3. Невозможно построить вечный двигатель первого рода, который бы давал механическую энергию, не затрачивая на это определенное количество молекулярной энергии.

4. Количество теплоты, подводимое к системе, расходуется на изменение Uвн и совершаемую работу.

5. Uвнфункция состояния, т. е. она не зависит от пути процесса, а зависит от начального и конечного состояния системы.

Доказательство:

Пусть ТДС рассматривается при двух параметрах давления и объема, имеется два состояния системы I и II. Нужно перевести систему из состояния I в состояние II либо по пути А, либо по пути В (рис. 3).

Рис. 3

Предположим, что по пути А изменение энергии будет UA, а по пути В – UB. Внутренняя энергия зависит от пути процесса

UA = UB,

UAUB /= 0.

Согласно пункту 1 из формулировок первого закона термодинамики, общий запас энергии в изолированной системе остается постоянным

UA = UB ,

Uвн – функция состояния не зависит от пути процесса, а зависит от состояния системы I или II. Uвн – функция состояния, является полным дифференциалом

Q = U + А –

интегральная форма уравнения первого закона термодинамики.

Q = dU + A–

для бесконечно малого процесса, A– сумма всех элементарных работ.

Калорические коэффициенты

Теплота изотермического расширения:

Уравнение первого закона термодинамики в калорических коэффициентах

Q = ldv + CvdT,

где l– коэффициент изотермического расширения;

Сvтеплоемкость при постоянном объеме.

теплоемкость при const давлении,

Q = hdp + СpdT,

Q = dP + pdv.

Связь между функциями CP и Cv

Q = hdp + СpdT = ldv + CvdT,

для реального газа.

Для идеального газа l= р

Ср– СV= R,

к = (Q/дv)– теплота изохорного расширения;

m = (Q/дP)v– теплота изобарного сжатия.

<p>4. Изопроцессы в термодинамике. Энергия Гельмгольца</p>

1. Изотермический – Т= const

так как

2. Изохорный – V = const

А = 0,

А = pd = 0,

Q = dU + pd,

Q = CvdT.

3. Изобарный – P = const

А = pd,

A = pV2 – pV1.

4. Адиабатический Q = 0

1) A = –dU,

A = –CV(T2 – T1), T2 T1;

2) pd= –CvdT,

действие, обратное логарифму – потенцирование

Уравнение первого закона термодинамики в калорических коэффициентах

Q = ld + CVdT,

где l– коэффициент изотермического расширения;

CVтеплоемкость при постоянном объеме.

теплоемкость при const давлении,

Q = hdP + CpdT ,

Q = dP + d.

Связь между функциями CPи CV

<p>5. Процессы. Второй закон термодинамики</p>

Второй закон термодинамики, в отличие от первого закона термодинамики, изучает все процессы, которые протекают в природе, и эти процессы можно классифицировать следующим образом.

Процессы бывают самопроизвольные, несамопроизвольные, равновесные, неравновесные.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука