Так как всякое движение происходит во времени и во всякое время может происходить движение, и так как, далее, все движущееся может двигаться быстрее и медленнее, то во всякое время будет происходить и более быстрое и более медленное движение. Если же это так, то и время должно быть непрерывным. Я разумею под непрерывным то, что делимо на всегда делимые части, при таком предположении относительно непрерывного и время должно быть непрерывным. Так как доказано, что более быстрое [тело] в меньшее время проходит равный [путь], то пусть А будет более быстрое [тело]. В — более медленное и пусть более медленное [тело] проходит величину ГД за время ZH. Стало быть, очевидно, что более быстрое [тело] пройдет ту же величину в меньшее время; пусть оно будет двигаться в течение [времени] ZТ. Обратно, если более быстрое [тело] прошло весь [путь] ГД за время ZТ, то более медленное [тело] за то же время пройдет меньший [путь]; обозначим его через ГК А если более медленное [тело] В прошло за время ZТ [путь] ГК, то более быстрое проходит его за меньшее время; следовательно, время ZТ будет опять разделено. При его разделении в том же отношении разделится и величина ГК. А если [разделится] величина, то [разделится] и время. И всегда будет происходить так, если переходить от более быстрого к более медленному и от более медленного к более быстрому, пользуясь указанным доказательством, ибо более быстрое будет делить время, а более медленное — длину. Следовательно, если такой обратный переход будет правильным и при обратном переходе всегда происходит деление, то очевидно, что всякое время будет непрерывным. Вместе с тем ясно, что и всякая величина будет непрерывной, так как время и величина делятся теми же самыми и одинаковыми делениями.
К тому же и с помощью обычных рассуждений легко уясняется, что величина непрерывна, если время непрерывно, поскольку в половинное время проходится половинный путь, и вообще в меньшее время — меньший, ибо одни и те же деления будут и для времени, и для величины. И если одно из них бесконечно, то будет [бесконечно] и другое, и в каком смысле [бесконечно] одно, в таком и другое, например, если время бесконечно в отношении концов, то и длина будет [бесконечна] в отношении концов; если [время бесконечно] в отношении делимости, то и длина в отношении делимости; если время [бесконечно] в обоих [указанных отношениях], то в обоих [будет бесконечна] и величина.
Поэтому ошибочно рассуждение Зенона, в котором предполагается, что невозможно пройти бесконечное [множество предметов] или коснуться каждого из них в конечное время. Ведь длина и время и вообще все непрерывное называются бесконечными в двояком смысле: или в отношении деления, или в отношении концов. И вот, бесконечного в количественном отношении нельзя коснуться в конечное время, а бесконечного в отношении деления — можно, так как само время бесконечно именно в таком смысле. Таким образом, бесконечное удается пройти в бесконечное, а не в конечное время и коснуться бесконечного [множества можно] бесконечным, а не конечным [множеством]. Разумеется, невозможно ни пройти бесконечное в конечное время, ни конечное в бесконечное время, но если время будет бесконечным, то и величина будет бесконечной, и если величина, то и время. Пусть АВ будет конечной величиной, Г — бесконечным временем; возьмем от него конечную часть ГД, в течение которой проходится какая-нибудь величина, положим BE. Она или без остатка уложится в величине АВ, или с остатком, или превзойдет ее; это безразлично, ибо если величина, равная BE, всегда проходится в равное время и если эта [величина] будет служить мерой целому, всякое время, в течение которого проходится целое, будет конечным; ведь оно будет делиться на равные [части], как и величина. Далее, если не всякая величина проходится в бесконечное время, но возможно пройти какую-нибудь, например BE, в конечное время и она измерит всю величину, а равная величина проходится в равное время, то, следовательно, будет конечным и время. Что величина BE проходится не в бесконечное [время], это ясно, раз берется время, ограниченное с одной стороны; ибо если часть проходится в меньшее [время], то это [время] должно быть ограниченным, так как окажется в наличии другой предел. То же самое доказательство применимо и в том случае, если длина бесконечна, а время конечно.