Читаем Физика без преград. Увлекательные научные факты, истории, эксперименты полностью

Физика без преград. Увлекательные научные факты, истории, эксперименты

В этой книге спрятано 99 секретов физики. Откройте ее и узнайте, как открывали Вселенную, законы притяжения и относительности и другие интересные явления вокруг нас. Картинки, фото и схемы вещей «в разрезе» покажут вам, как что устроено. Забавные и простые тексты расскажут о том, как Николай Коперник сменил картину мира, как происходит «круговорот» энергии в природе, как «шутит» инерция. Да здравствует наука БЕЗ занудства и непонятных терминов!

Валерия Черепенчук

Физика / Научно-популярная литература / Образование и наука18+

Annotation

В этой книге спрятано 99 секретов физики. Откройте ее и узнайте, как открывали Вселенную, законы притяжения и относительности и другие интересные явления вокруг нас.

Картинки, фото и схемы вещей «в разрезе» покажут вам, как что устроено. Забавные и простые тексты расскажут о том, как Николай Коперник сменил картину мира, как происходит «круговорот» энергии в природе, как «шутит» инерция.

Да здравствует наука БЕЗ занудства и непонятных терминов!

Валерия Черепенчук

Важные физические открытия

№ 1

№ 2

№ 3

№ 4

№ 5

№ 6

№ 7

№ 8

№ 9

№ 10

№ 11

№ 12

№ 13

№ 14

№ 15

№ 16

Физика макромира

№ 17

№ 18

№ 19

№ 20

№ 21

№ 22

№ 23

№ 24

№ 25

№ 26

№ 27

№ 28

№ 29

№ 30

№ 31

№ 32

№ 33

№ 34

№ 35

№ 36

№ 37

№ 38

№ 39

№ 40

№ 41

№ 42

№ 43

№ 44

№ 45Родословная сосулек. Как и почему они появляются?

№ 46

№ 47

№ 48

№ 49

№ 50

№ 51

№ 52

№ 53

№ 54

№ 55

№ 56

№ 57

№ 58

№ 59

№ 60

№ 61

Физика микромира

№ 62

№ 63

№ 64

№ 65

№ 66

№ 67

№ 68

№ 69

№ 70

№ 71

№ 72

№ 73

№ 74

№ 75

Не только физика

№ 76

№ 77

№ 78

№ 79

№ 80

№ 81

№ 82

№ 83

№ 84

№ 85

№ 86

№ 87

№ 88

№ 89

№ 90

№ 91

№ 92

№ 93

№ 94

№ 95

№ 96

№ 97

№ 98

№ 99

Валерия Черепенчук

Физика без преград. Увлекательные научные факты, истории, эксперименты

Важные физические открытия

№ 1

Из чего сделана Вселенная? Первые версии

Древнегреческие мыслители задавались вопросом о природе «первоначала»: из чего состоят все имеющиеся на земле предметы и вещества? Широкую известность приобрели теории Фалеса (624–547 гг. до н. э.), считавшего «первоначалом» воду. Он утверждал, что вода может «загустевать», образуя землю; испаряться, превращаясь в воздух, и так далее. Так рождались первые попытки научного объяснения мира.

В системе Демокрита (ок. 460 г. до н. э. – ок. 370 г. до н. э.) особое место заняло понятие «атом», то есть «неделимый». Так он именовал мельчайшую неделимую частицу вещества; все тела, по мнению Демокрита, – просто комбинации атомов, хаотично двигающихся в пространстве Вселенной и обладающих способностью соединяться, формируя материю. В своей основе эта идея была подтверждена спустя тысячелетия.

Аристотель (384 г. до н. э. – 322 г. до н. э.) ввел в научный оборот слово «физика» (от греческого «физис» – «природа»). Движение, по его мнению, вечно существует в мире и связывает воедино все сущее. А первопричиной этого движения является высшая сила – Бог. Познать природу, изучить физику – значит разобраться в причинах всего происходящего.

Происхождение Вселенной

Аристотель стоял на позициях геоцентризма, характерного для ученых Древней Греции, – считал, что Земля является центром мироздания. Многие выводы великого ученого (а в его книгах представлена практически вся система знаний того времени – логика, политика, физика, астрономия) впоследствии были опровергнуты, но это не умаляет его заслуг.

Аристотель ввел в научный оборот слово «физика» (от греческого – «природа»)

№ 2

Архимед и его ванна. Первый закон гидростатики

Легенда гласит, что однажды Сиракузский тиран Гиерон повелел Архимеду проверить работу придворного ювелира: владыка подозревал, что часть золота, отпущенная на изготовление венца, была заменена на более дешевый металл и осела в руках ушлого мастера. Архимеду предстояло для начала определить объем короны; в задумчивости он решил принять ванну. Она была наполнена до краев, и, залезши в воду, ученый часть ее расплескал по полу. Далее произошло то, что описано во множестве книг: Архимед выскочил из ванны и помчался по улицам, крича: «Эврика!» («Нашел!») А «нашел» рассеянный математик первый закон гидростатики. Он гласит: «Всякое тело при погружении в жидкость потеряет в весе столько, сколько весит вытесненная им жидкость». Или, в более современном варианте, «на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме погруженной части тела». Этот закон потом получил имя Архимеда… «Выталкивающая сила» – тоже. В виде формулы это выглядит так:

FA=?gV,

где ? – это плотность жидкости или газа, g – ускорение свободного падения (в среднем 9,8 м/с2), а V – объем тела.

Чем завершилась история с короной? Большинство сходится на том, что Архимед, погрузив ее в наполненный водой сосуд и замерив объем вылившейся воды, а потом повторив опыт с более легкими металлами, доказал: ювелир и в самом деле обманул Гиерона. О том, какова оказалась судьба нечистого на руку мастера и получил ли какую-либо награду Архимед, история умалчивает.

Всякое тело при погружении в жидкость теряет в весе столько, сколько весит вытесненная им жидкость

Архимед завещал нарисовать на своем надгробии шар, вписанный в цилиндр, чтобы потомки помнили: их объемы и поверхности соотносятся как 2/3.

№ 3

Дайте мне точку опоры… и зеркало. Наука и война

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука