Читаем Физика будущего полностью

Джонсон мечтает о звездах, но понимает, что реальность на данный момент выглядит куда скромнее его мечтаний. В 1993 г. русские развернули на корабле, отстыкованном от станции «Мир», 25-рефлектор из лавсана, но целью эксперимента была всего лишь демонстрация системы развертывания. Вторая попытка закончилась неудачей. В 2004 г. японцы успешно запустили два прототипа солнечного паруса, но опять же, целью было испытание системы развертывания, а не движения. В 2005 г. была предпринята амбициозная попытка развернуть настоящий солнечный парус под названием Cosmos 1, организованная Планетарным обществом, общественной организацией Cosmos Studios и Российской академией наук. Парус был запущен с российской подводной лодки, но запуск ракеты «Волна» оказался неудачным, и до орбиты солнечный парус не добрался.

А в 2008 г., когда команда из NASA попыталась запустить солнечный парус NanoSail-D[46], та же история произошла с ракетой Falcon 1.

Наконец в мае 2010 г. Японское агентство аэрокосмических исследований успешно запустило IKAROS — первый космический аппарат, который должен использовать технологию солнечного паруса в межпланетном пространстве. Аппарат был выведен на траекторию полета к Венере, успешно развернул квадратный парус с диагональю 20 м и продемонстрировал возможность управлять его ориентацией и менять скорость полета. В дальнейшем японцы планируют запустить еще один межпланетный зонд с солнечным парусом к Юпитеру.

<p>Ядерная ракета</p>

Ученые рассматривают также возможность использования ядерной энергии для межзвездных перелетов. Еще в 1953 г. Комиссия по атомной энергии США начала серьезные разработки ракет с атомными реакторами, начало которым было положено проектом Rover. В 1950-е и 1960-е гг. эксперименты с ядерными ракетами заканчивались в основном неудачно. Ядерные двигатели вели себя нестабильно и вообще оказывались слишком сложными для тогдашних систем управления. Кроме того, несложно показать, что энергетический выход обычного атомного реактора деления совершенно недостаточен для межзвездного космического аппарата. Средний промышленный атомный реактор производит примерно 1000 МВт энергии, а этого недостаточно, чтобы добраться до звезд.

Однако еще в 1950-е гг. ученые предложили использовать для межзвездных аппаратов атомные и водородные бомбы, а не реакторы. В проекте «Орион», к примеру, предполагалось разгонять ракету взрывными волнами от атомных бомб. Звездолет должен был сбрасывать позади себя серию атомных бомб, взрывы которых порождали бы мощные вспышки рентгеновского излучения. Ударная волна от этих взрывов должна была разгонять звездолет.

В 1959 г. физики из General Atomics оценили, что продвинутая версия «Ориона» диаметром 400 м должна весить 8 млн т, а энергию ей должна обеспечивать 1000 водородных бомб.

Горячим сторонником проекта «Орион» был физик Фримен Дайсон. «Для меня „Орион“ означал доступность всей Солнечной системы для распространения жизни. Он мог изменить ход истории, — говорит Дайсон. Кроме того, это был бы удобный способ избавиться от атомных бомб. — За один полет мы избавились бы от 2000 бомб».

Концом проекта «Орион», однако, стал заключенный в 1963 г. Договор об ограничении ядерных испытаний, запретивший наземные взрывы. Без испытаний невозможно было довести конструкцию «Ориона» до ума и проект закрыли.

<p>Прямоточный термоядерный двигатель</p>

Еще один проект ядерной ракеты выдвинул в 1960 г. Роберт Буссард (Robert W. Bussard); он предложил снабдить ракету термоядерным двигателем, похожим на обычный авиационный реактивный двигатель. Вообще, прямоточный двигатель захватывает воздух по ходу полета и уже внутри смешивает его с топливом. Затем топливно-воздушная смесь поджигается, и происходит химический взрыв, который создает движущую силу. Буссард предложил применить тот же принцип к термоядерному двигателю. Вместо того чтобы забирать воздух из атмосферы, как делает авиационный двигатель, прямоточный термоядерный двигатель будет собирать в межзвездном пространстве имеющийся там водород. Собранный газ предполагается сжать и нагреть при помощи электрических и магнитных полей до начала термоядерной реакции синтеза гелия, при которой выделится громадное количество энергии. Возникнет взрыв, и ракета получит толчок. А поскольку запасы водорода в межзвездном пространстве неисчерпаемы, прямоточный ядерный двигатель сможет, предположительно, работать вечно.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже