И самое страшное, но обычно и самое реальное. А если полей несколько? Тут встаёт и машет рукой принцип суперпозиции, до этого шлявшийся где-то в механике: нам нужно векторно сложить все напряжённости от всех полей, которые действуют в той точке, в которой смотрим - опять-таки, это уже только для одной точки, даже без окружности! Потому что поля друг с другом не взаимодействуют, каждая из напряжённостей тянет в свою сторону со своей силой - практически так же, как и в механике, результат можно узнать, лишь сложив все с учётом их направлений. Во какой "аппарат" выдумали - описывать-то описывает, но посчитать - руки практически связаны. Что там по одной точечке колупать... Но, с другой стороны, с этим особо сильно и не морочатся - считают все нужные цифири только в "ключевых" точках, где что-то кардинально меняется, а на остальное забивают, дабы не ударяться головой о юношеский максимализм - тут он не везде уместен.
Вот мы всё говорим: поле, поле. А про то, на что оно действует, забыли. Точнее, маленькие точечные зарядики обсосали уже со всех сторон, а вот про реальные туловища забыли. Условно все вещества можно разделить на проводники и диэлектрики. В проводниках есть так называемые свободные заряды, летающие внутри них и способные дать полю подействовать на себя, в диэлектриках можно считать, что таких зарядов нет - вообще они есть, но их очень-очень мало. Строго говоря, есть ещё полупроводники - это нечто среднее; заряды там вроде бы и есть, но они не совсем свободны - их сначала нужно прикормить и выудить. Но о них ближе к самому концу.
Вкратце и поумнее: напряжённость электрического поля - это сила, с которой поле действует на единичный точечный заряд, в нём находящийся. E = F/q, где E - напряжённость электрического поля, F - сила, с которой оно действует; q - заряд, на который оно действует. Единица измерения - В/м. Силовые линии электрического поля - это линии, касательные к которым совпадают по направлению с вектором напряжённости в точке касания. Электрические силовые линии не пересекаются, начинаются на положительных зарядах и оканчиваются на отрицательных. Однородное электрическое поле - поле, в каждой точке которого вектор напряжённости одинаков по величине и направлению. Силовые линии однородного электрического поля - параллельные прямые. Напряжённость поля, создаваемого точечным зарядом: E = k*q/(r^2), где k - тот же экспериментальный коэффициент, что и в законе Кулона (1/(4пи*эпсилон0) = 9*10^9 Н*м^2/(Кл^2)), q - заряд, поле которого считаем, r - расстояние от заряда до той точки, в которой считаем значение напряжённости. При действии нескольких полей их напряжённости векторно складываются (принцип суперпозиции) - результирующая напряжённость является векторной суммой всех составляющих напряжённостей. С точки зрения действия поля вещества можно разделить на проводники и диэлектрики. У проводников имеются свободные заряды, которые могут реагировать на электрическое поле, у диэлектриков таких зарядов крайне мало (можно считать, что нет вообще).
Вот уже столько всего заумного понаписывал, а зачем? Всё тот же вопрос вертится в голове: ну зачем всё это надо?! Ответ кроется в том, что обзывают основной задачей электростатики: раз уж мы предполагаем, что у нас всё электрическое летает в электрическом поле, то в идеале нужно знать, какое это поле будет в каждой из всех точечек пространства. А чтобы знать, "какое будет поле", надо знать, выражаясь умным языком, две его характеристики: силовую и энергетическую составляющую: то есть знать, с какой силой поле будет гонять зарядики туда-сюда, и какую энергию зарядики при этом будут иметь. Зная две эти вещи, можно считать уже всё остальное. Силовая характеристика - это напряжённость, а энергетическая будет в этом абзаце.