1. Течение идеальной жидкости без внутреннего трения
. Если бы жидкость была лишена трения (этот воображаемый случай был бы крайне неблагоприятен с практической точки зрения), линии тока огибали бы предмет максимально симметрично и плавно продолжались бы позади него (фиг. 229, а). Все слои жидкости двигались бы с одинаковой скоростью, равной общей скорости, если не считать некоторое повышение скорости около предмета, компенсирующее изменение сечения потока. Равнодействующая сил давления на поверхность предмета была бы равна нулю, жидкость, лишенная вязкости, не поднимала бы и не увлекала бы за собой предмет! Хотя такое поведение, по-видимому, противоречит опыту, все же идеальная лишенная вязкости жидкость иногда является полезной абстракцией для изучения распределения линий тока. Однако во всех реальных жидкостях существует внутреннее трение. Жидкость не может скользить вдоль поверхности твердого предмета, она неподвижна на его поверхности (или движется вместе с ним, если предмет движется). Полированная поверхность твердого тела в молекулярном масштабе оказывается слишком грубой и захватывает даже быстротекущую жидкость, которая образует у поверхности неподвижный слой. Поэтому предсказываемое теорией необычное поведение идеальной жидкости (не поднимает и не увлекает за собой предметы) никогда не наблюдается в действительности[141]. Наличие у жидкости внутреннего трения изменяет картину линий тока и распределение скоростей в потоке. В очень медленно движущемся потоке линии тока плавно изгибаются вокруг предмета; в очень быстром потоке позади предмета они образуют сложный шлейф из вихрей. Теперь опишем эти крайние формы и промежуточные между ними стадии для реальной жидкости, обтекающей твердый предмет.
Фиг. 229.
Ламинарное течение.
а
— идеальная жидкость без вязкости, F = 0; б — ламинарное течение в вязкой жидкости, F ~ v; в — турбулентное течение, F ~ v2; г — течение c пограничным слоем.