Читаем Физика для любознательных. Том 1. Материя. Движение. Сила полностью

Если направить на такую стеклянную дифракционную решетку пучок белого света, интерференционные полосы разбрасываются настолько, что по обеим сторонам от узкой центральной белой полосы становятся видны широкие цветные полосы (спектры), с помощью линзы свет, идущий в определенном направлении, собирают и получают изображение исходного источника — щели.

В монохроматическом свете изображение источника представляет собой резко очерченную узкую полосу, а в белом свете множество таких изображений при наложении даст широкий спектр.

Первый слева и справа спектр (спектр «первого порядка») создают волны, которые от каждой щели проходят на λ больше (или меньше), чем волны от соседней щели. В следующую спектральную полосу (спектр «второго порядка») приходят волны, у которых путь от двух соседних щелей отличается на 2λ. При этом, конечно, все приходящие волны данного света согласуются по фазе (фиг. 284).

Фиг. 284.Дифракционная решетка.

а — к центральной светлой полосе; б — к спектру «первого порядка»; в — к спектру «второго порядка»

Если направить на дифракционную решетку желтый свет от окрашенного солью пламени, то мы увидим центральную желтую «линию» (изображение источника — щели, находящейся перед пламенем) и такие же резко очерченные желтые линии в первом порядке, во втором порядке и т. д. Представленная на фиг. 285 схема дает для спектра первого порядка соотношение

длина волны = d∙sin А,

где А — угол между центральной линией и линией первого порядка, a d — расстояние между штрихами решетки, известное из данных делительной машины. Таким образом, имея в своем распоряжении хорошую дифракционную решетку, можно точно измерить длины световых волн. (Вы сами можете проделать такое приближенное измерение, используя долгоиграющую пластинку в качестве отражательной решетки. Чтобы измерить d для этой решетки, поставьте пластинку на проигрыватель и сосчитайте число оборотов.)

Освещение дифракционной решетки белым светом дает широкий спектр в нервом порядке, еще более широкий во втором порядке и т. д.

Фиг. 285.Схема распространения волн, прошедших через дифракционную решетку.

Лучи красного света отклоняются сильнее всего (поэтому длина волны красного света самая большая), затем следуют оранжевые, желтые, зеленые, синие, фиолетовые лучи. Измерения углов дают примерно следующие значения длин волн:

За пределами видимого спектра

За пределами видимого света находится область инфракрасного излучения с большей длиной волны, которую можно легко измерить с помощью грубых дифракционных решеток. За инфракрасными лучами спектр продолжают радиоволны — от самых коротких волн так называемого сверхвысокочастотного (СВЧ) диапазона до обычных радиоволн, у которых λ измеряется сотнями метров. По другую сторону области видимого света располагаются ультрафиолетовые лучи с более короткими длинами волн, чем у видимого света (фиг. 286); длину волны ультрафиолетовых лучей измеряют с. помощью тонких дифракционных решеток, которые приходится помещать в вакуум, чтобы избежать поглощения этих лучей в воздухе.

Фиг. 286.Спектр электромагнитных волн.

а — некоторые источники электромагнитных волн; б — спектр электромагнитных волн.

Спектры рентгеновских лучей

Если длины волн видимого света измеряются многими тысячами ангстрем (А°), то рентгеновские лучи обладают значительно более короткой длиной волны, близкой к 1 А°.

Едва ли мыслимо нарезать столь тонкую решетку, у которой штрихи были бы расположены на расстоянии, скажем, 10 А° один от другого, чтобы наблюдать дифракцию рентгеновских лучей. (Правда, при наклонном расположении обычных решеток рентгеновские лучи «видят» уменьшенное расстояние между штрихами.) Мы же используем слои атомов в кристаллах. Электроны атомов в каждом слое рассеивают рентгеновские лучи в виде слабой «отраженной волны». Волны одной длины, отраженные от ряда слоев атомов под определенным углом, складываются в заметный по интенсивности пучок, совсем как при образовании обычного спектра складываются волны, идущие от штрихов решетки. Таким образом, имея кристалл известной структуры, можно измерить длину волны рентгеновских лучей (фиг. 287), а значит, использовать рентгеновские лучи для исследования расположения атомов в кристаллах. Оказалось, что все твердые тела имеют кристаллическое строение и даже у жидкостей расположению молекул присуща известная локальная упорядоченность.

Фиг. 287.Дифракция рентгеновских лучей в кристалле.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки