Читаем Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия полностью

Кеплер родился в Германии в семье армейского офицера. Он был старшим сыном. Рос он слабым ребенком, сильно болел и часто жизнь его висела на волоске. Родители его были так бедны, что им пришлось открыть сельскую таверну, чтобы сводить концы с концами. Когда маленькому Иоганну исполнилось девять лет, его взяли из школы и до двенадцати лет он прислуживал в таверне. Затем он вернулся в школу, а потом поступил в университет, который благополучно окончил, считаясь вторым в своей группе. Тем временем отец его вернулся в армию, а мать перессорилась со всеми родственниками, включая и сына, который был счастлив удрать из дома. Сначала Кеплера не очень интересовала астрономия.

В университете он познакомился с теорией Коперника, стал ее сторонником, защищал ее во время университетских дискуссий и даже написал по поводу этой теории реферат. Но в то время его основные интересы лежали в области философии и религии, и он не уделял времени астрономии. Однако когда оказалась свободной вакансия лектора по астрономии, Кеплер, который в то время искал работу, скрепя сердце занял это место, заявив, что не оставляет надежды «получить возможность заняться более интересным делом». В те дни астрономия не пользовалась тем уважением, которое позднее сам Кеплер помог ей приобрести. Тем не менее он начал серьезно заниматься наукой, которую ему предстояло преподавать, и чем больше он изучал астрономию и думал о ней, тем больше увлекался и тем больше новых идей роилось в его голове. «Он был прирожденным мыслителем, подобно тому как Моцарт был прирожденным музыкантом», — говорит Лодж. Он должен был найти математическую схему, лежащую в основе планетной системы. Его беспокойный пытливый ум и пылкое воображение занимали задачи, связанные с числами и размерами[42].

Как и Пифагор, «он был убежден, что бог создал мир в соответствии с принципом идеальных чисел и что поэтому лежащая в основе мироздания математическая гармония… является реальной и доступной пониманию причиной движения планет»[43]. Сам Кеплер сказал: «Я размышлял над этим вопросом со всей энергией, на которую был способен мой ум».

Ум его пылал, он мучился вопросами: Почему существует только шесть планет? Почему их орбиты имеют именно такие пропорции и размеры? Связаны ли «периоды обращения» планет с размерами их орбит? Первый вопрос, «Почему именно шесть?», характерен для того времени. В наше время мы должны были бы искать седьмую планету. Но тогда казалось, что факты непреложны и что числа обладают магическими свойствами. В системе Птолемея насчитывалось семь планет (включая Солнце и Луну и исключая Землю) и даже доказывалось, что их столько и должно быть.

Кеплер пытался снова и снова найти простое соотношение, связывающее радиус одной орбиты с радиусом следующей. На основании наблюдений, проведенных Тихо Браге, Кеплер вычислил, что радиусы орбит в системе Коперника приближенно относятся как 8:15:20:30:115:195. Он пытался понять тайну этих отношений. Каждая догадка стоила ему немало труда, и каждый раз, когда оказывалось, что она не соответствует фактам, Кеплер честно от нее отказывался. Его мистически настроенный ум заставлял его считать, подобно древним грекам, что окружности — идеальные формы. Одно время он думал, что можно построить модель орбит, по которым движутся планеты, следующим образом: начертить окружность, вписать в нее равносторонний треугольник, затем вписать в этот треугольник еще окружность, в нее снова треугольник и т. д. Эта схема состоит из ряда окружностей, радиусы которых относятся как 2:1. Кеплер надеялся, что можно построить такие окружности, отношения радиусов которых будут соответствовать отношениям радиусов орбит, если пользоваться вместо треугольников квадратами, шестиугольниками и т. д.



Фиг. 73.Первая гипотеза Кеплера.

В правильный многоугольник (например, квадрат) мощно вписать окружность так, чтобы она касалась его сторон. Можно также вписать окружность, проходящую через вершины квадрата. Для этой окружности можно в свою очередь построить правильный многоугольник, в который она будет вписана. Отношение радиусов R/r этих окружностей будет одинаково для всех квадратов, другое значение R/r

будет иметь место для всех треугольников. Геометрическая задача: каково будет отношение R/r для внутреннего и внешнего круга в случае квадрата? в случае треугольника? 



Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки