Выключатель — это просто приспособление, позволяющее производить такой разрыв. То же самое происходит, когда расплавляется проволочка в пробке. Эта непрерывная металлическая трасса для тока называется электрической цепью. Если исключить из цепи лампочку и составить цепь из длинного куска тонкой проволоки, то вся проволока нагреется; на всем ее протяжении происходит нечто такое, что приводит к нагреванию проволоки[1]
. Если часть проволоки тонкая, а часть толстая, толстая проволока нагревается значительно меньше тонкой; лампочка в цепи, о которой шла речь вначале, представляет собой предельный случай цепи, состоящей из проволоки разной толщины. Если сократить длину проволоки, то она нагреется до более высокой температуры. Когда цепь состоит из очень короткого куска проволоки, проволока может нагреться до температуры, при которой она расплавится или вызовет воспламенение окружающих предметов. В этом случае говорят о «коротком замыкании», имея в виду любую электрическую цепь, настолько короткую, т. е. обладающую таким малым сопротивлением, что возникает опасность повреждения цепи.Чтобы избежать опасностей, связанных с коротким замыканием, проволоку изолируют, защищают неметаллическим покрытием, например резиной, вощеной бумагой, тканью[2]
.Задача 1.
Предположим, что провода, идущие от какого-либо источника к осветительной лампочке и обратно, как показано на фиг. 2, случайно касаются друг друга, и в точке
а) Какие участки цепи должны нагреться больше всего?
б) Показанные на фигуре предохранители содержат проволочки из легкоплавкого металла. Если предохранители расплавятся, то какие:
Фиг. 2.
Рассматривая вновь цепь с лампочкой, мы обнаружим, что, если поместить лампочку в какую-нибудь другую точку цепи, она прежнему будет гореть. Если включить в цепь «последовательно» несколько лампочек, то все они будут гореть одинаково, но значительно менее ярко, чем одна лампочка. По-видимому, на всем протяжении цепи в ней что-то происходит: в цепи поддерживается некое состояние готовности заставить лампочку гореть. Специальные опыты с нитями накала электрических лампочек показывают, что лампочка светит просто в результате подвода тепла к нити: если бы мы смогли нагреть нить до такой же температуры при помощи бунзеновской горелки, она светилась бы так же ярко. Таким образом, рассматриваемое нами специфическое «электрическое свойство» цепи заключается, по-видимому, в том, что в любом месте цепи может выделяться тепло[3]
.Фиг. 3.
Посмотрим, обладает ли цепь другими «электрическими свойствами». Не разрывая проволоки, сверните ее в спираль, как это сделали Эрстед и Ампер столетие тому назад. Вы увидите, что проволока, свернутая в спираль, намагничивает железный стержень: будучи введен внутрь спирали, стержень притягивает железные опилки. Если взять две такие спирали, каждая из которых включена в свою электрическую цепь, то можно намагнитить два стержня и наблюдать сильное взаимное притяжение или отталкивание между ними. Сами по себе спирали, без железных сердечников, лишь слабо притягивают или отталкивают друг друга.
Фиг. 4.
Взаимное притяжение и отталкивание электромагнитов лежит в основе работы электрических двигателей, звонков, телефонов и некоторых типов измерителей тока (амперметров). Отметим опять-таки, что спираль может находиться в цепи в любом месте, лишь бы цепь оставалась замкнутой. Таким образом, цепь обладает еще одним «электрическим свойством»[4]
— оно проявляется в магнитном действии цепи.Обладает ли электрическая цепь еще каким-нибудь свойством?