Циклотроны
В это же время строился циклотрон
, ускоряющий пучки ионов до высоких энергий по совершенно другому принципу. Вместо того чтобы создавать источники напряжения на миллионы вольт и более, подключать их к большим ионным пушкам, преодолевать большие трудности с надежной изоляцией установки, нельзя ли многократно использовать значительно меньшее напряжение, скажем 30 000 в, доводя энергию ионов до очень большой величины, не используя нигде в установке соответствующую данной энергии огромную разность потенциалов? Образно говоря, для того чтобы бросить мяч с очень большой скоростью, нельзя ли вместо одного гигантского броска, сделанного великаном, добиться этой же цели, последовательно ударяя мяч достаточно большое число раз? Для мяча одно из таких решений состояло бы в том, чтобы привязать его веревкой к столбу, как это делается в детском теннисе, и ударять его каждый раз, когда он проходит полную окружность. Таков же основной принцип работы циклотрона. Нельзя, конечно, привязать ионизованный атом к столбу, но его можно заставить двигаться по круговой орбите, поместив ион в магнитное поле, перпендикулярное его траектории (фиг. 108). Если атом движется по такой окружности, его можно разгонять, периодически создавая в определенных участках траектории электрическое поле.
Фиг. 108.
Магнит циклотрона.
Как уже говорилось, для того чтобы частица двигалась по кругу, к ней нужно приложить магнитное поле, перпендикулярное направлению ее движения. Поэтому циклотрон снабжен огромным магнитом, единственное назначение которого — удерживать движущиеся ионы на круговых орбитах, чтобы к ним можно было прилагать ускоряющие силы снова и снова, используя электрическое поле. Мы не можем неоднократно ускорять ионы электрическим полем умеренной напряженности, просто создав его в области движения ионов, так как ионы будут одинаково часто двигаться как по направлению поля (ускоряясь на этих участках траектории), так и против поля (теряя энергию на этих участках), так что желаемого ускорения вовсе не произойдет. Для этой цели нужно использовать небольшую хитрость, выключая или включая электрическое поле в подходящие моменты времени; этим мы предотвратим ненужное торможение ионов на определенных участках траектории, заставив электрическое поле только ускорять ионы.
Чтобы увидеть, как это делается практически, рассмотрим следующую упрощенную схему циклотрона.
Фиг. 109.
а
— магнит из мягкого железа намагничивается током, текущим по двум катушкам, так что в зазоре между полюсами магнита создается строго вертикальное и практически однородное магнитное поле; б — камера В — это прямоугольная коробка, в которую заключены ионный источник, дуанты для создания ускоряющих электрических полей и зонды для измерений в пучке ускоренных ионов. В камере поддерживается высокий вакуум; в — токи в катушках намагничивают железо и создают магнитное поле. Катушки, как правило, охлаждаются водой.
Посредине зазора между магнитными полюсами находится откачанная до высокого вакуума большая коробка б
, в которой ускоряются ионы. Это камера циклотрона. В ней находится источник протонов Н+, которые должны ускоряться. В камере расположены два ускоряющих электрода D и D'. Временно представим себе их в виде двух металлических пластин, расположенных друг против друга и подсоединенных к батарее, D — к положительному полюсу, a D'— к отрицательному. (На самом деле устройство в камере совсем другое, мы только временно рассмотрим эту модель, чтобы потом легче понять работу реальной установки.) Предположим, что напряжение батареи, к которой подключены электроды D и D', равно 20 000 в. Таким образом, в пространстве между заряженными электродами создается сильное однородное электрическое поле, а в других областях пространства (за пластинами) электрическое поле практически отсутствует.