В большинстве случаев, если только мишень не состоит из легких ядер и столкновение не лобовое, нейтрон, проходя недалеко от ядра мишени, сталкивается с ним упруго, отдавая ему лишь малую часть своей кинетической энергии. При упругом столкновении с тяжелым ядром мишени, таким, как ядро свинца, даже в лобовом столкновении нейтрон теряет менее 2 % своей кинетической энергии; радиус действия ядерных сил настолько мал, что лобовые или близкие к ним соударения очень редки. Однако в силу того, что атомов много, поскольку даже кусочек вещества, который нам кажется крошечным, содержит их громадное число, нейтрон, проходя через мишень, быстро замедляется благодаря упругим столкновениям. Быстрый нейтрон (т. е. нейтрон с кинетической энергией ~1 Мэв, образующийся при делении U235
) будет двигаться сквозь окружающий материал сначала с большой скоростью, затем со средней, а потом с малой скоростью до тех пор, пока он в столкновениях не замедлится до «тепловой» энергии (т. е. когда его кинетическая энергия сравняется с энергией молекул газа при температуре материала). Это приводит к тому, что полный пробег быстрого нейтрона в большинстве твердых тел составляет несколько сантиметров по сравнению с пробегом протонов или альфа-частиц с той же первоначальной энергией, равным нескольким тысячным долям сантиметра.Фиг. 149.
Бомбардировка нейтронами. Захват
Иногда при соударении на очень близких расстояниях нейтрон захватывается ядром мишени. Частота этих событий, по-видимому, сильно колеблется от одного элемента к другому и различна даже для изотопов одного и того же элемента. Вероятность захвата также сильно зависит, причем довольно сложным образом, от скорости нейтрона[166]
.Часто новое ядро, образовавшееся после захвата, оказывается нестабильным, радиоактивным. Эксперименты по захвату нейтронов позволяют исследовать не только структуру ядра, но и получать новые нестабильные атомы. Ниже перечислены некоторые из нескольких сотен таких событий, известных в настоящее время.
Фиг. 150.
Фиг. 151.
1) Ядро водорода поглощает нейтрон и становится ядром «тяжелого водорода» (дейтерий), которое представляет собой сильно связанные друг с другом протон и нейтрон
0
n1 + 1H1 —> 1H22) Ядро серебра может поглотить нейтрон и стать радиоактивным. Особенно часто это случается для
Это легко демонстрируется: стоит лишь замедлить быстрые нейтроны с помощью бака с водой, как серебряная монета становится радиоактивной (фиг. 152 и 153).
Фиг. 152.
Фиг. 153.
Источником быстрых нейтронов служит смесь радия и бериллия. Нейтроны, сталкиваясь с ядрами водорода воды, теряют энергию в каждом столкновении, замедляясь до тепловых скоростей в результате примерно десятка столкновений. После этого у них велики шансы при тесном сближении с ядром атома серебра поглотиться им. Нейтроны, кроме того, сталкиваются с ядрами атомов кислорода, однако при столкновении с ними они теряют гораздо меньшую энергию. Иногда они захватываются ядрами атома водорода, образуя ядра «тяжелого водорода».
3) Ядро алюминия поглощает нейтрон, испустив
0
n1 + 13Al27 —> 11Na24 + 2He44) Ядро бора может поглотить медленный нейтрон и развалиться на ядро лития и
0
n1 + 5B10 —> 3Li7 + 2He45) Кадмий обладает исключительно большим сечением захвата
6)
0
n1 + 7N14 —> 6C14 + 1H1Радиоактивный углерод С14
распадается с периодом полураспада 5600 лет, испуская6
C14 —> 7N14 + -1e0