Читаем Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра полностью

Кое-что было известно о структуре самих ядер. Радиоактивные элементы испускают α-, β- и улучи с такой энергией, которая свидетельствует об их ядерном происхождении. Масс-спектрографы показали, что ядерные массы представляются почти целыми числами, умноженными на массу протона. Поэтому теории ядерной структуры исходили из представления о компактной группе протонов и электронов, удерживаемых вместе специальными силами. Теперь мы видим, что модель была неудобной: электроны настолько легки, что их длина волны слишком велика для того, чтобы поместиться внутри измеренных предельных размеров ядра. Кроме того, существовала проблема сохранения спина. С открытием нейтрона были предложены более подходящие компоненты ядер. Теперь стали считать, что они состоят из протонов и нейтронов[178], каким-то образом очень сильно связанных.

При распаде радиоактивного атома выделяется огромное количество энергии, которое можно точно измерить. Но для данного одиночного радиоактивного атома нельзя предсказать точно время, которое он проживет до распада. Мы можем указать только вероятностную величину, такую, как период полураспада для большого количества атомов. Понаблюдайте за счетчиком Гейгера, регистрирующим альфа-частицу, — вы увидите, что альфа- частицы появляются в произвольные моменты времени совершенно случайно, подобно каплям дождя на жестяной крыше. К началу 1900-х годов физики уже обращались к статистической точке зрения по другим поводам. Она была хорошо проверена в кинетической теории, где было видно, что регулярные характеристики и свойства, такие, как постоянное давление газа, устойчивый поток газа…, закон Бойля…, являются статистическими средними, характеризующими огромное скопление молекул. Теперь оказалось, что вероятность определяет распад радиоактивных ядер, бегство альфа-частиц из ядерной толчеи. Каким образом большинство ядер постоянно остается в виде целого, в то время как другие взрываются совершенно случайно? Этот вопрос адресован новой точке зрения, новой теории.


Относительность, 1905 г.

Тем временем была развита и принята на вооружение теория относительности. С философской стороны она проповедовалась как реформирующее учение: нельзя наделять картину природы деталями, которые нельзя проверить. Нельзя даже задавать вопросы, которые предполагают существование таких деталей. (Например, нельзя наделять электроны ненаблюдаемыми свойствами, спрашивая, какого они цвета, или изображая для них отчетливые орбиты.) С собственно физической стороны теория относительности предсказала различные эффекты и явления, наблюдаемые в опытах с движущимися объектами. Вот некоторые из них:

I. Покоящийся (или движущийся мимо объекта) наблюдатель обнаружит у движущегося объекта увеличенную массу m, большую, чем его «масса покоя» m0. Эта масса m будет расти с увеличением скорости, стремясь к бесконечности при приближении скорости объекта к скорости света. Следовательно, никакие материальные объекты нельзя ускорить настолько, чтобы они двигались быстрее света, поскольку для этого потребовалась бы бесконечная сила.

II. С любого вида энергией связана масса, величина которой равна энергии, деленной на квадрат скорости света: m = Е/с2.

III. Следует считать, что любое тело массы m обладает полной энергией 2. (Эта величина включает кинетическую энергию тела и его «энергию покоя» m0с2, связанную с его внутренней структурой.)

IV. Прошедшее, настоящее и будущее не всегда абсолютно разделены. Движущиеся по-разному наблюдатели будут делать разные заключения о некоторых событиях (далеко разделенных в пространстве или очень близких во времени). Один наблюдатель может обнаружить, что события Р и Q произошли одновременно, другой наблюдатель, движущийся с иной скоростью, может увидеть, что Q произошло раньше Р, а третий наблюдатель знает, что Р произошло раньше Q. Таким образом, теория относительности предостерегает нас от самоуверенного обращения с причиной и следствием[179].

V. Все наблюдатели, как бы они ни двигались, при измерении получат одну и ту же величину скорости света — движение к источнику или от него никак не повлияет на результат измерения. Это было исходным предположением, из которого были выведены правила теории относительности. Теперь мы обобщим его в более широкое требование ко всем измерениям, а именно: ВСЕ ЗАКОНЫ ФИЗИКИ ИМЕЮТ ОДИНАКОВУЮ ФОРМУ ДЛЯ ВСЕХ НАБЛЮДАТЕЛЕЙ, НЕЗАВИСИМО ОТ ИХ ДВИЖЕНИЯ ОТНОСИТЕЛЬНО ПРОИСХОДЯЩЕГО В ПРИРОДЕ СОБЫТИЯ[180].


Модели

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии