Юкава пытался найти механизм, посредством которого протоны и нейтроны удерживаются в ядрах. Эти силы ведут себя различно на разных расстояниях: с увеличением расстояния они уменьшаются от громадных значений внутри ядра до пренебрежимо малых значений сразу вне «кратера», причем гораздо быстрее, чем по закону 1/
Представим себе, что возникший мезон перед тем, как поглотиться, успевает в течение короткого времени совершить несколько оборотов над краем ядерной ямы — подобно электрону на боровской орбите, но с гораздо меньшими размерами. (Ниже будут рассмотрены другие предположения о волновом поведении мезона.) Для существования такой «орбиты» волна де-Бройля должна представлять собой стоячую волну в форме окружности радиусом
λ
= 2π∙rПоскольку для любой частицы λ
= h/mv, то отсюда mv = h/2π∙r.Выше только говорилось о частице (не заботясь о деталях), масса же ее
m
0с = h/2π∙rОтсюда m
0 = h/2π∙r∙c, и величинуm
0 = (6,62∙10-34 дж∙сек)/(2∙3,14∙(3,0∙108 м/сек)∙(1,4∙10-15 м)) ~= 250∙10-30 кгСравните это значение с массой покоя электрона, равной примерно 0,9∙10-30
кг. Чтобы успеть просуществовать (недолго) в ядре и обеспечить соответствующие силы связи на соответствующих расстояниях, «обменная» частица должна обладать массой покоя в несколько сот электронных масс. Это означает, что она должна быть в 5 или 10 раз легче, чем самый легкий атом.Вскоре после этого предсказания, казавшегося столь странным и фантастическим, промежуточные частицы были обнаружены среди треков, оставленных космическими лучами в камере Вильсона. Вначале это выглядело как поразительное подтверждение предсказания — даже величина массы была примерно правильной. Затем оказалось, что у новых частиц, явно нестабильных, время полураспада и другие характеристики не согласовывались с предсказаниями теории. Однако последующие экспериментальные поиски привели к обнаружению еще большего числа разных частиц. Некоторые из них оказались такими, какими их предсказал Юкава, и, как теперь думают, играют в ядрах роль необходимого связующего материала. В настоящее время для дальнейшего изучения можно создавать на ускорителях самые разнообразные мезоны, причем свободные, вне ядер.
Мезоны как вполне реальные частицы в настоящее время стали привычным понятием в субатомной физике. Мезонная теория играет важную роль в ядерной физике. Измерения мезонных масс (~270 электронных масс)[212]
подтвердили гипотезу Юкавы, высказанную тогда, когда таких частиц никто не наблюдал и о существовании которых никто не догадывался.[Замечания по поводу других моделей волнового поведения мезона в ядре:
1) Картина стоячей кольцевой волны выглядит слишком надуманной. С физической точки зрения лучше представлять себе мезон блуждающим внутри кратера потенциальной ядерной ямы. В этом случае представление о стоячей волне де-Бройля было бы более похожим на задачу о колеблющейся струне. При этом предположении простейшая стоячая волна должна иметь нулевую амплитуду на краях ямы (здесь располагаются узлы волны). При этом 1
/22) При более последовательном рассмотрении нет необходимости привлекать ни волны, ни яму, а следует исходить из принципа неопределенности в том его виде, в котором он формулируется для энергии и времени:
ΔE
∙Δt = h/2π (по крайней мере)