Читаем Физика для всех. Движение. Теплота полностью

Напротив капиллярной трубки находится крылышко, подвешенное на тонкой нити. Если тепло течет как жидкость, то оно должно повернуть крылышко. Именно это и происходит. При этом количество гелия в сосуде не изменяется. Как же объяснить это чудесное явление? Лишь единственным способом: при нагревании возникает поток нормальной части жидкости от нагретого места к холодному и поток сверхтекучей части в обратную сторону. Количество гелия в каждой точке не меняется, но так как вместе с переносом тепла движется нормальная часть жидкости, то крылышко поворачивается благодаря вязкому трению этой части и остается отклоненным столько времени, сколько продолжается нагрев.

Из того, что сверхтекучее движение не переносит тепла, следует и другой вывод. Выше говорилось о «переползании» гелия через край стакана. Но «вылезает» из стакана сверхтекучая часть, а остается нормальная. Тепло связано только с нормальной частью гелия, оно не сопровождает «вылезающую» сверхтекучую часть. Значит, по мере «вылезания» гелия из сосуда одно и то же тепло будет приходиться на все меньшее количество гелия – остающийся в сосуде гелий должен нагреваться. Это действительно наблюдается при опыте.

Массы гелия, связанные с сверхтекучим и нормальным движением, не одинаковы. Отношение их зависит от температуры. Чем ниже температура, тем больше сверхтекучая часть массы гелия. При абсолютном нуле весь гелий становится сверхтекучим. По мере повышения температуры все большая часть гелия начинает вести себя нормально и при температуре 2,19 K весь гелий становится нормальным, приобретает свойства обычной жидкости.

Но у читателя уже вертятся на языке вопросы: что же это за сверхтекучий гелий, как может частица жидкости участвовать одновременно в двух движениях, как объяснить самый факт двух движений одной частицы?.. К сожалению, мы вынуждены оставить здесь все эти вопросы без ответа. Теория гелия II слишком сложна, и чтобы ее понять, надо знать очень много.

<p>Пластичность</p>

Упругость – это способность тела восстанавливать свою форму после того, как сила перестала действовать. Если к метровой стальной проволоке с поперечным сечением в 1 мм 2подвесить килограммовую гирю, то проволока растянется. Растяжение незначительно, всего лишь 0,5 мм, но его нетрудно заметить. Если гирю снять, то проволока сократится на те же 0,5 мм, и метка вернется в прежнее положение. Такая деформация и называется упругой.

Заметим, что проволока сечением в 1 мм 2под действием силы в 1 кГ и проволока сечением в 1 см 2под действием силы в 100 кГ находятся, как говорят, в одинаковых условиях механического напряжения. Поэтому поведение материала всегда надо описывать, указывая не силу (что беспредметно, если сечение тела неизвестно), а напряжение, т.е. силу, приходящуюся на единицу площади. Обычные тела – металлы, стекло, камни – можно упруго растянуть в лучшем случае всего лишь на несколько процентов. Выдающимися упругими свойствами обладает резина. Резину можно упруго растянуть на несколько сот процентов (т.е. сделать ее вдвое и втрое больше первоначальной длины), а отпустив такой резиновый шнур, мы увидим, что он вернется в исходное состояние.

Все без исключения тела под действием небольших сил ведут себя упруго. Однако предел упругому поведению наступает у одних тел раньше, у других значительно позже. Например, у таких мягких металлов, как свинец, предел упругости наступает уже, если подвесить к концу проволоки миллиметрового сечения груз 0,2–0,3 кГ. У таких твердых материалов, как сталь, этот предел примерно в 100 раз выше, т.е. лежит около 25 кГ.

По отношению к большим силам, превосходящим предел упругости, разные тела можно грубо разделить на два класса – такие, как стекло, т.е. хрупкие, и такие, как глина, т.е. пластичные.

Если прижать палец к куску глины, он оставит отпечаток, в точности передающий даже сложные завитушки рисунка кожи. Молоток, если им ударить по куску мягкого железа или свинца, оставит четкий след. Воздействия нет, а деформация осталась – ее называют пластической или остаточной. Таких остаточных следов не удастся получить на стекле: если упорствовать в этом намерении, то стекло разрушится. Столь же хрупки некоторые металлы и сплавы, например чугун. Железное ведро под ударом молота сплющится, а чугунный котелок расколется.

О прочности хрупких тел можно судить по следующим цифрам. Чтобы превратить в порошок кусок чугуна, надо действовать с силой около 50–80 кГ на квадратный миллиметр поверхности. Для кирпича эта цифра падает до 1,5–3 кГ.

Как и всякая классификация, деление тел на хрупкие и пластичные в достаточной степени условно. Прежде всего, хрупкое при малой температуре тело может стать пластичным при более высоких температурах. Стекло можно превосходно обрабатывать, как пластический материал, если нагреть его до температуры в несколько сот градусов.

Мягкие металлы, как свинец, можно ковать холодными, но твердые металлы поддаются ковке лишь в сильно нагретом, раскаленном виде. Повышение температуры резко увеличивает пластические свойства материалов.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Четыре социологических традиции
Четыре социологических традиции

Будучи исправленной и дополненной версией получивших широкое признание критиков «Трех социологических традиций», этот текст представляет собой краткую интеллектуальную историю социологии, построенную вокруг развития четырех классических идейных школ: традиции конфликта Маркса и Вебера, ритуальной солидарности Дюркгейма, микроинтеракционистской традиции Мида, Блумера и Гарфинкеля и новой для этого издания утилитарно-рациональной традиции выбора. Коллинз, один из наиболее живых и увлекательных авторов в области социологии, прослеживает идейные вехи на пути этих четырех магистральных школ от классических теорий до их современных разработок. Он рассказывает об истоках социологии, указывая на области, в которых был достигнут прогресс в нашем понимании социальной реальности, области, где еще существуют расхождения, и направление, в котором движется социология.Рэндалл Коллинз — профессор социологии Калифорнийского университета в Риверсайде и автор многих книг и статей, в том числе «Социологической идеи» (OUP, 1992) и «Социологии конфликта».

Рэндалл Коллинз

Научная литература