Читаем Физика для всех. Движение. Теплота полностью

Период колебания можно измерить с очень большой точностью. Поэтому опыты с маятниками дают возможность очень точно измерять ускорение силы тяжести.

<p>Развертка колебаний</p>

Прикрепим к нижней части грузика маятника мягкий грифелек и подвесим маятник над листом бумаги так, чтобы грифель касался бумаги (рис. 43). Теперь слегка отклоним маятник. Качающийся грифелек прочертит на бумаге небольшой отрезок прямой линии. В середине качания, когда маятник проходит положение равновесия, карандашная линия будет пожирнее, так как в этом положении грифелек сильнее нажимает на бумагу. Если потянуть лист бумаги в направлении, перпендикулярном к плоскости колебания, то прочертится кривая, изображенная на рис. 43. Нетрудно сообразить, что получившиеся волночки будут расположены густо, если бумагу тянуть медленно, и редко, если лист бумаги движется со значительной скоростью. Чтобы кривая получилась аккуратной, как на рисунке, нужно, чтобы лист бумаги двигался строго равномерно.

Этим способом мы как бы «развернули» колебания.

Развертывание нужно для того, чтобы сказать, где находился и куда двигался грузик маятника в тот или иной момент времени. Представьте себе, что бумага движется со скоростью 1 см/с с момента, когда маятник находился в крайнем положении, например слева, от средней точки. На нашем графике это начальное положение соответствует точке, помеченной цифрой 1. Через 1/4 периода маятник будет проходить через среднюю точку. За это время бумага продвинется на число сантиметров, равное (1/4) T– точка 2 на рисунке. Теперь маятник движется вправо, одновременно ползет и бумага. Когда маятник придет в правое крайнее положение, бумага продвинется на число сантиметров, равное (1/2) T, – точка 3 на рисунке. Маятник вновь идет к средней точке и попадает через (3/4) Tв положение равновесия – точка 4 на чертеже. Точка 5 завершает полное колебание, и дальше явление повторяется через каждые Tсекунд или через каждые Tсантиметров на графике.

Таким образом, вертикальная линия на графике – это шкала смещений точки от положения равновесия, горизонтальная средняя линия – это шкала времени.

Из такого графика легко находятся две величины, исчерпывающим образом характеризующие колебание. Период определяется как расстояние между двумя равнозначными точками, например между двумя ближайшими вершинами. Также сразу измеряется наибольшее смещение точки от положения равновесия. Это смещение называется амплитудой колебания.

Развертка колебания позволяет нам, кроме того, ответить на поставленный выше вопрос: где находится колеблющаяся точка в тот или иной момент времени. Например, где будет колеблющаяся точка через 11 с, если период колебания равен 3 с, а движение началось в крайнем положении слева? Через каждые 3 с колебание начинается с той же точки. Значит, через 9 с тело также будет в крайнем левом положении.

Нет нужды поэтому в графике, на котором кривая протянута на несколько периодов, – вполне достаточен чертеж, на котором изображена кривая, соответствующая одному колебанию. Состояние колеблющейся точки через 11 с при периоде 3 с будет такое же, как и через 2 с. Отложив на чертеже 2 см (мы ведь условились, что скорость протягивания бумаги равна 1 см/с, иными словами, что масштаб чертежа – 1 см равен 1 с), мы увидим, что через 11 с точка находится на пути из крайнего правого положения в положение равновесия. Величину смещения в этот момент находим из рисунка.

Для нахождения величины смещения точки, совершающей малые колебания около положения равновесия, не обязательно прибегать к графику. Теория показывает, что в этом случае кривая зависимости смещения от времени представляет собой синусоиду. Если смещение точки обозначить через y, амплитуду через a, период колебания через T, то значение смещения через время tпосле начала колебания найдем по формуле

Колебание, происходящее по такому закону, называется гармоническим. Аргумент синуса равен произведению 2π на t/ T. Величина 2π( t/ T) называется фазой.

Имея под руками тригонометрические таблицы и зная период и амплитуду, легко вычислить величину смещения точки и по значению фазы сообразить, в какую сторону точка движется.

Нетрудно вывести формулу колебательного движения, рассматривая движение тени, отбрасываемой на стенку грузиком, движущимся по окружности.

Смещения тени мы будем откладывать от среднего положения. В крайних положениях смещение yравняется радиусу круга a. Это амплитуда колебания тени.

Если от среднего положения грузик прошел по окружности угол φ, то его тень (рис. 44) отойдет от средней точки на величину asin φ.

Пусть период движения грузика (являющийся, конечно, и периодом колебания тени) есть T; это значит, что 2π радиан грузик проходит за время T. Можно составить пропорцию φ/ t= 2π/ T, где t– время поворота на угол φ.

Таким образом, φ = 2π t/ Tи y= asin 2π t/ T. Это мы и хотели доказать.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Четыре социологических традиции
Четыре социологических традиции

Будучи исправленной и дополненной версией получивших широкое признание критиков «Трех социологических традиций», этот текст представляет собой краткую интеллектуальную историю социологии, построенную вокруг развития четырех классических идейных школ: традиции конфликта Маркса и Вебера, ритуальной солидарности Дюркгейма, микроинтеракционистской традиции Мида, Блумера и Гарфинкеля и новой для этого издания утилитарно-рациональной традиции выбора. Коллинз, один из наиболее живых и увлекательных авторов в области социологии, прослеживает идейные вехи на пути этих четырех магистральных школ от классических теорий до их современных разработок. Он рассказывает об истоках социологии, указывая на области, в которых был достигнут прогресс в нашем понимании социальной реальности, области, где еще существуют расхождения, и направление, в котором движется социология.Рэндалл Коллинз — профессор социологии Калифорнийского университета в Риверсайде и автор многих книг и статей, в том числе «Социологической идеи» (OUP, 1992) и «Социологии конфликта».

Рэндалл Коллинз

Научная литература