Читаем Физика для всех. Движение. Теплота полностью

Теперь напомним читателю, что хотя мы говорили о законе сохранения энергии, но это не был достаточно универсальный закон сохранения. Импульс и момент сохранялись в опыте, а энергия сохранялась только в идеале – при отсутствии трения. На самом же деле энергия всегда уменьшалась.

Но раньше мы ничего не говорили об энергии атомов. Возникает естественная мысль: там, где на первый взгляд мы отмечали уменьшение энергии, на самом деле незаметным для глаза способом энергия передавалась атомам тела.

Атомы подчиняются законам механики. Правда (это вам придется узнать из другой книги), их механика несколько своеобразна, но это дела не меняет – в отношении закона сохранения механической энергии атомы ничуть не отличаются от больших тел.

Значит, полное сохранение энергии обнаружится лишь тогда, когда наряду с механической энергией тела будет учтена внутренняя энергия этого тела и окружающей среды. Только в этом случае закон будет универсальным.

Из чего же складывается полная энергия тела? Первую ее составляющую мы, по сути дела, уже назвали – это сумма кинетических энергий всех атомов. Но не надо забывать и про то, что атомы взаимодействуют один с другим. Таким образом, добавляется еще потенциальная энергия этого взаимодействия. Итак, полная энергия тела равняется сумме кинетических энергий его частиц и потенциальной энергии их взаимодействия.

Нетрудно понять, что механическая энергия тела как целого есть только часть полной энергии. Ведь когда тело покоится, молекулы его не останавливаются и не перестают взаимодействовать одна с другой. Энергия теплового движения частиц, которая остается у покоящегося тела, и энергия взаимодействия частиц составляют внутреннюю энергию тела. Поэтому полная энергия тела равняется сумме механической и внутренней.

В механическую энергию тела как целого входит также энергия тяготения, т.е. потенциальная энергия взаимодействия частиц тела с земным шаром.

Рассматривая внутреннюю энергию, мы уже не обнаружим пропажи энергии. Когда мы рассматриваем природу через стекла, увеличивающие мир в миллионы раз, картина представляется нам на редкость гармоничной. Нет никаких потерь механической энергии, а есть лишь превращение ее во внутреннюю энергию тела или среды. Пропала работа? Нет! Энергия ушла на убыстрение относительного движения молекул или изменение их взаимного расположения.

Молекулы послушны закону сохранения механической энергии. В мире молекул нет сил трения; мир молекул управляется переходами потенциальной энергии в кинетическую и обратно. Лишь в грубом мире больших вещей, не замечающем молекул, «энергия пропадает».

Если в каком-либо явлении механическая энергия пропадает вся или частично, то на такую же величину возрастает внутренняя энергия тел и среды, участвующих в этом явлении. Иначе говоря, механическая энергия переходит без каких бы то ни было потерь в энергию молекул или атомов.

Закон сохранения энергии – это строжайший бухгалтер физики. В любом явлении приход и расход должны точно сойтись. Если этого не произошло в каком-либо опыте, то значит, что-то важное ускользнуло от нашего внимания. Закон сохранения энергии в таком случае сигнализирует: исследователь, повторить опыт, увеличить точность измерений, искать причину потерь! На таком пути физики неоднократно делали новые важные открытия и еще и еще раз убеждались в строжайшей справедливости этого замечательного закона.

<p>Калория</p>

У нас уже есть две единицы энергии – эрг и килограммометр. Казалось бы, достаточно. Однако при изучении тепловых явлений по традиции пользуются еще и третьей единицей – калорией.

Позже мы увидим, что и калория не исчерпывает список принятых для обозначения энергии единиц.

Возможно, в каждом отдельном случае употребление «своей» единицы энергии удобно и целесообразно. Но в любом мало-мальски сложном примере, связанном с переходом энергии из одного вида в другой, возникает невообразимая путаница с единицами.

Чтобы упростить расчеты, новая система единиц (СИ) предусматривает одну единицу для работы, энергии и количества тепла – джоуль ( см. стр. 92). Однако, учитывая силу традиций и тот срок, который понадобится, чтобы система стала общеупотребительной и единственной системой единиц, полезно познакомиться поближе с «уходящей» единицей количества теплоты – калорией.

Малая калория (кал) – это количество энергии, которое надо сообщить 1 г воды, чтобы нагреть его на 1°.

Слово «малая» надо упомянуть потому, что иногда используют «большую» калорию, которая в тысячу раз больше выбранной единицы (большая калория часто обозначается ккал, что значит «килокалория»).

Соотношение между калорией и механическими единицами работы эргом или килограммометром находят, нагревая воду механическим путем. Подобные опыты ставились неоднократно. Можно, например, повысить температуру воды энергичным перемешиванием. Затраченная для нагрева воды механическая работа оценивается достаточно точно. Из таких измерений было найдено:

1 кал = 0,427 кГм = 4,18 Дж.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Четыре социологических традиции
Четыре социологических традиции

Будучи исправленной и дополненной версией получивших широкое признание критиков «Трех социологических традиций», этот текст представляет собой краткую интеллектуальную историю социологии, построенную вокруг развития четырех классических идейных школ: традиции конфликта Маркса и Вебера, ритуальной солидарности Дюркгейма, микроинтеракционистской традиции Мида, Блумера и Гарфинкеля и новой для этого издания утилитарно-рациональной традиции выбора. Коллинз, один из наиболее живых и увлекательных авторов в области социологии, прослеживает идейные вехи на пути этих четырех магистральных школ от классических теорий до их современных разработок. Он рассказывает об истоках социологии, указывая на области, в которых был достигнут прогресс в нашем понимании социальной реальности, области, где еще существуют расхождения, и направление, в котором движется социология.Рэндалл Коллинз — профессор социологии Калифорнийского университета в Риверсайде и автор многих книг и статей, в том числе «Социологической идеи» (OUP, 1992) и «Социологии конфликта».

Рэндалл Коллинз

Научная литература