Читаем Физика для всех. Движение. Теплота полностью

Как уже говорилось, теплообмен – это вид перехода энергии; мы называем более горячим то тело, которое отдает энергию. Мы ощущаем тело горячим, если оно нагревает руку, т.е. передает ей энергию. Наоборот, если тело ощущается холодным, то это значит, оно отнимает энергию у нашего тела.

Про тело, которое отдает тепло (т.е. путем теплообмена отдает энергию), мы говорим: его температура выше температуры того тела, которое забирает это тепло.

Наблюдая за тем, охлаждается или нагревается интересующий нас предмет в присутствии того или иного тела, мы найдем для этого предмета «свое место» в ряду нагретых тел. Температура – это своего рода метка, указывающая, для каких тел интересующий нас предмет будет дарителем, а для каких – получателем тепла.

Температуру измеряют термометрами.

В основу устройства термометров можно положить использование различных свойств тел, чувствительных к температуре. Чаще всего пользуются свойством тел расширяться при повышении температуры.

Если при соприкосновении с разными телами тело термометра будет изменять свой объем, это значит, что тела имеют разную температуру. Когда объем тела термометра больше – температура выше, а когда объем меньше – температура ниже.

Самые различные тела могут служить термометрами: и жидкие, как ртуть или спирт, и твердые – металлы, и газообразные. Но ведь разные тела расширяются по-разному, и ртутные, спиртовые, газовые и прочие градусы совпадать не будут. Конечно, всегда можно отметить на всех термометрах две основные точки – температуры таяния льда и кипения воды. Поэтому 0 и 100 градусов Цельсия все термометры всегда покажут одинаково. Но между 0 и 100 градусами тела будут расширяться не одинаково. Одно тело быстро расширяется между 0 и 50 градусами ртутного термометра и медленно на второй части этого интервала, а другое – наоборот.

Изготовив термометры с разными расширяющимися телами, мы обнаружим заметные расхождения в их показаниях, несмотря на то, что в основных точках показания будут совпадать. Более того, водяной термометр привел бы нас к такому открытию: если охлажденное до нуля тело положить на электроплитку, то его «водяная температура» сначала бы падала, а потом росла. Это происходит по той причине, что вода при нагревании сначала уменьшает свой объем и лишь потом ведет себя «нормально», т.е. увеличивает объем при нагревании.

Мы видим, что необдуманный выбор вещества для термометра может завести нас в тупик.

Но чем же тогда руководствоваться при выборе «правильного» термометра? Какое тело идеально для этой цели?

О таких идеальных телах мы уже говорили. Это идеальные газы. Взаимодействие частиц у идеального газа отсутствует, и, изучая расширение идеального газа, мы изучаем, как меняется движение его молекул. Именно по этой причине идеальный газ является идеальным телом для термометра.

И действительно, сразу бросается в глаза, что если вода расширяется иначе, чем спирт, спирт – иначе, чем стекло, стекло – иначе, чем железо, то водород, кислород, азот или любой другой газ в состоянии разрежения, которого достаточно для того, чтобы заслужить название идеального, расширяются при нагревании в точности одинаково.

Таким образом, основой для определения температуры в физике служит изменение объема определенного количества идеального газа. Разумеется, ввиду сильной сжимаемости газов надо особенно тщательно следить за тем, чтобы газ находился при постоянном давлении.

Для того чтобы проградуировать газовый термометр, мы должны точно измерить объем взятого нами газа при 0° и при 100°. Разность объемов V 100и V 0мы разделим на 100 равных частей. Другими словами, изменение объема газа на (1/100)·( V 100V 0) и соответствует одному градусу Цельсия (1 °C).

Теперь положим, что наш термометр показывает объем V. Какая температура t°C соответствует этому объему? Нетрудно сообразить, что

т.е.

Этим равенством каждый объем Vмы относим к температуре tи получаем ту температурную шкалу *10, которой пользуются физики.

При увеличении температуры объем газа неограниченно возрастает – нет никакого теоретического предела росту температуры. Напротив, низкие (отрицательные в шкале Цельсия) температуры имеют предел.

Шкала Цельсия, в которой за 0 °C принята температура тающего льда, а за 100 °C – температура кипения воды (обе – при нормальном давлении 760 мм Нg), очень удобна. Несмотря на это, англичане и американцы пользовались до сих пор такой температурной шкалой, которая кажется нам очень странной. Как, например, будет воспринята вами такая фраза из английского романа: «Лето стояло не жаркое, температура была 60–70 градусов». Опечатка? Нет, шкала Фаренгейта (°F).

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Четыре социологических традиции
Четыре социологических традиции

Будучи исправленной и дополненной версией получивших широкое признание критиков «Трех социологических традиций», этот текст представляет собой краткую интеллектуальную историю социологии, построенную вокруг развития четырех классических идейных школ: традиции конфликта Маркса и Вебера, ритуальной солидарности Дюркгейма, микроинтеракционистской традиции Мида, Блумера и Гарфинкеля и новой для этого издания утилитарно-рациональной традиции выбора. Коллинз, один из наиболее живых и увлекательных авторов в области социологии, прослеживает идейные вехи на пути этих четырех магистральных школ от классических теорий до их современных разработок. Он рассказывает об истоках социологии, указывая на области, в которых был достигнут прогресс в нашем понимании социальной реальности, области, где еще существуют расхождения, и направление, в котором движется социология.Рэндалл Коллинз — профессор социологии Калифорнийского университета в Риверсайде и автор многих книг и статей, в том числе «Социологической идеи» (OUP, 1992) и «Социологии конфликта».

Рэндалл Коллинз

Научная литература