Читаем Физика для всех. Книга 1. Физические тела полностью

Если толкнуть шарик, лежащий в углублении, он начнет двигаться в гору, постепенно теряя кинетическую энергию. Когда она будет потеряна полностью, произойдет мгновенная остановка и начнется движение вниз. Теперь уже потенциальная энергия будет переходить в кинетическую. Шарик наберет скорость, проскочит положение равновесия по инерции и опять начнет подъем, только в противоположную сторону. Если трение незначительно, то такое движение «вверх — вниз» может продолжаться очень долго, а в идеальном случае — при отсутствии трения — оно будет длиться вечно.

Таким образом, движения вблизи положения устойчивого равновесия всегда имеют колебательный характер.

Для изучения колебания, пожалуй, более пригоден маятник, чем шарик, перекатывающийся в ямке. Хотя бы потому, что у маятника легче свести к минимуму трение.

Когда грузик маятника отклонен в крайнее положение, скорость и кинетическая энергия его равны нулю. Потенциальная энергия в этот момент наибольшая. Грузик идет вниз — потенциальная энергия уменьшается и переходит в кинетическую. Значит, и скорость движения возрастает. Когда грузик проходит наинизшее положение, его потенциальная энергия наименьшая и соответственно кинетическая энергия и скорость максимальны. При дальнейшем движении грузик снова поднимается. Теперь скорость убывает, потенциальная энергия возрастает.

Если отвлечься от потерь на трение, то грузик отклонится на такое же расстояние вправо, на какое он первоначально был отклонен влево. Потенциальная энергия перешла в кинетическую, а затем в том же количестве создалась «новая» потенциальная энергия. Мы описали первую половину одного колебания. Вторая половина протекает так же, только грузик движется в обратную сторону.

Колебательное движение является движением повторяющимся, или, как говорят, периодическим. Возвращаясь к исходной точке, грузик каждый раз повторяет свое движение (если не учитывать изменений в результате трения) как в отношении пути, так и в отношении скорости и ускорения. Время, затрачиваемое на одно колебание, т. е. на возвращение в исходную точку, одинаково для первого, второго и всех последующих колебаний. Это время — одна из важнейших характеристик колебания — называется периодом, мы будем обозначать его буквой Т. Через время Т движение повторяется, т. е. через время Т мы всегда найдем колеблющееся тело в том же месте пространства и движущимся в ту же сторону. Через полпериода смещение тела, а также направление движения изменят знак. Так как период Т есть время одного колебания, то число n колебаний в единицу времени будет равно 1/Т.

От чего же зависит период колебания тела, движущегося вблизи положения устойчивого равновесия? В частности, от чего зависит период колебания маятника? Первым поставил и решил этот вопрос Галилей. Формулу периода колебания маятника мы сейчас выведем.

Однако трудно элементарным путем применять законы механики к неравномерно-ускоренному движению. Поэтому, чтобы обойти эту трудность, заставим грузик маятника по колебаться в вертикальной плоскости, а описывать окружность, оставаясь все время на одной высоте. Такое движение создать нетрудно, надо лишь дать начальный толчок отведенному от положения равновесия маятнику точно в направлении, перпендикулярном к радиусу отклонения, и подобрать силу этого толчка.

На рис. 4.2 изображен такой «круговой маятник».



Грузик с массой m движется по кругу. Значит, кроме силы, тяжести mg, на него действует центробежная сила mv2/r, которую мы можем представить и в виде 4π2n2rm. Здесь n — число оборотов в секунду. Поэтому выражение для центробежной силы можно записать и так: m∙4π2r/Т2. Равнодействующая этих двух сил натягивает нить маятника.

На рисунке заштрихованы два подобных треугольника — треугольники сил и расстояний. Отношения соответствующих катетов равны, значит,

mgT2/m∙4π2r = h/r

или

T = 2π∙√(h/g)

От каких же причин зависит период колебания маятника? Если мы производим опыты в одном и том же месте земного шара (g не меняется), то период колебания зависит лишь от разности высот точки подвеса и точки нахождения груза. Масса груза, как и всегда при движениях в поле тяжести, не сказывается на периоде колебания.

Интересно следующее обстоятельство. Мы изучаем движение вблизи положения устойчивого равновесия. При малых же отклонениях разность высот h мы можем заменить длиной маятника l. Легко проверить это. Если длина маятника 1 м, а радиус отклонения 1 см, то

h = √(10 000 — 1) = 99,995 см.

Различие между h и l в 1 % наступит лишь при отклонении в 14 см. Таким образом, период свободных колебаний маятника для не слишком больших отклонений от положения равновесия равен

T = 2π∙√(l/g)

т. е. зависит лишь от длины маятника и значения ускорения свободного падения в том месте, где производится опыт, но не зависит от величины отклонения маятника от положения равновесия.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги