Читаем Физика для всех. Книга 1. Физические тела полностью

Чтобы подсчитать это ускорение v2/R, надо знать скорость движения Луны и ее расстояние от Земли. Оба эти числа были Ньютону известны. Ускорение Луны оказалось равным примерно 0,27 см/с2. Это приблизительно в 3600 раз меньше значения g = 980 см/с2.

Значит, создаваемое Землей ускорение уменьшается с удалением от центра Земли. Но как быстро? Расстояние от Земли до Луны равно шестидесяти земным радиусам. Но 3600 есть квадрат 60. Увеличив расстояние в 60 раз, мы уменьшили ускорение в (60)2 раз.

Ньютон сделал вывод, что ускорение, а значит и сила тяготения, изменяется обратно пропорционально квадрату расстояния. Далее, мы уже знаем, что сила, действующая на тело в поле тяжести, пропорциональна его массе. Поэтому первое тело притягивает второе с силой, пропорциональной массе второго тела; второе тело притягивает первое с силой, пропорциональной массе первого тела.

Речь идет о тождественно равных силах — силах действия и противодействия. Значит, сила взаимного тяготения должна быть пропорциональна массе как первого, так и второго тела, иначе говоря — произведению масс.

Итак,


Это и есть закон всемирного тяготения. Ньютон предположил, что такой закон будет верен для любой пары тел.

Теперь эта смелая гипотеза полностью доказана. Таким образом, сила притяжения двух тел прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними.

А что это за γ, которая вошла в формулу? Это коэффициент пропорциональности. Нельзя ли считать его равным единице, как мы это уже неоднократно делали? Нет, нельзя: мы условились измерять массу в граммах, расстояние в сантиметрах, а силу в динах. Значение γ равно силе притяжения между двумя массами в 1 г, находящимися на расстоянии 1 см. Мы не можем считать силу равной чему-то, в том числе и одной дине: коэффициент γ должен быть измерен.

Чтобы найти γ, разумеется, не обязательно промерять силы притяжения граммовых гирек. Мы заинтересованы в том, чтобы произвести измерение над массивными телами — тогда сила будет побольше.

Если определить массу двух тел, знать расстояние между ними и измерить силу притяжения, то γ найдется простым расчетом.

Такие опыты ставились много раз. Они показали, что значение у всегда одно и то же, независимо от материала притягивающихся тел, а также от свойств среды, в которой они находятся. Коэффициент γ называется гравитационной постоянной. Она равна

γ = 6,67∙10-8 см3/г∙с2.

Схема одного из опытов по измерению у показана на рис. 6.1.



К концам коромысла весок подвешены два шарика одинаковой массы. Один из них находится над свинцовой плитой, другой — под ней. Свинец (для опыта взято 100 т свинца) увеличивает своим притяжением вес правого шарика и уменьшает вес левого. Правый шарик перевешивает левый. По величине отклонения коромысла весов вычисляется значение γ.

Незначительной величиной у объясняется трудность обнаружения силы тяготения между двумя предметами.

Два тяжелых 1000-килограммовых груза тянутся друг к другу с ничтожной силой, равной всего лишь 6,7 дин, т. е. 0,007 гс, если эти предметы находятся на расстоянии 1 м один от другого.

Но как велики силы притяжения между небесными телами! Между Луной и Землей


между Землей и Солнцем


ВЗВЕШИВАНИЕ ЗЕМЛИ


Прежде чем начать пользоваться законом всемирного тяготения, нам надо обратить внимание на одну важную деталь.

Мы только что высчитывали силу притяжения между двумя грузами, находящимися на расстоянии 1 м друг от друга. А если бы эти тела находились на расстоянии 1 см? Что же подставлять в формулу — расстояние между поверхностями тел или расстояние между центрами тяжести или что-нибудь третье?

Закон всемирного тяготения F = γ∙m1m2/r2 можно со всей строгостью применять тогда, когда подобных сомнений не возникает. Расстояние между телами должно быть много больше размеров тел; мы должны иметь право рассматривать тела как точки. Как же применить закон к двум близким телам? В принципе просто: надо мысленно разбить тела на маленькие кусочки, для каждой пары подсчитать силу F, а затем сложить (векторно) все силы.

В принципе это просто, но практически довольно сложно.

Однако природа помогла нам. Расчет показывает: если частицы тела взаимодействуют с силой, пропорциональной 1/r2, то шарообразные тела обладают свойством притягиваться как точки, расположенные в центрах шаров. Для двух близких шаров формула F = γ∙m1m2/r2 точно справедлива, как и для далеких, если r — расстояние между центрами шаров. Мы уже использовали это правило раньше, вычисляя ускорение на поверхности Земли.

Теперь мы имеем право применять формулу тяготения для вычисления силы притяжения тела Землей. Под r мы должны понимать расстояние от центра Земли до тела.

Пусть М — масса и R — радиус Земли. Тогда сила притяжения тела массы m у земной поверхности


Но ведь это же вес тела, который мы всегда выражаем как mg. Значит, ускорение свободного падения


Теперь-то мы можем сказать, как взвесили Землю. Массу Земли можно вычислить из этой формулы, так как g, γ и R — известные величины. Таким же способом можно взвесить и Солнце.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги