Читаем Физика для всех. Книга 2. Молекулы полностью

Ясно, что при подсчете физических величин, описывающих систему, состоящую из миллиардов миллиардов частиц, совершенно необходим новый подход. Ведь было бы бессмысленно, не говоря уже о том, что и абсолютно невозможно, следить за движениями всех частиц и описывать это движение с помощью формул механики. Однако именно это огромное количество частиц позволяет применить к изучению тел новые, "статистические" методы. Эти методы широко используют понятие вероятности событий. Основы статистической физики были заложены замечательным австрийским физиком Людвигом Больцманом (1844-1906). В серии работ Больцман показал, каким образом указанная программа может быть осуществлена для газов.

В 1877 г. логическим завершением этих исследований явилось данное Больцманом статистическое истолкование второго начала термодинамики. Формула, связывающая энтропию и вероятность состояния системы, высечена на памятнике Больцману.

Трудно переоценить научный подвиг Больцмана, нашедшего в теоретической физике совершенно новые пути. Исследования Больцмана подвергались при его жизни насмешкам со стороны консервативной немецкой профессуры: в то время атомные и молекулярные представления считались многими наивными и ненаучными. Больцман покончил жизнь самоубийством, и обстановка, несомненно, сыграла в этом далеко не последнюю роль.

Здание статистической физики было в значительной степени завершено трудами выдающегося американского физика Джозайи Уилларда Гиббса (1839-1903). Гиббс обобщил методы Больцмана и показал, каким образом можно распространить статистический подход на все тела.

Последняя работа Гиббса вышла в свет уже в начале XX века. Очень скромный исследователь, Гиббс печатал свои труды в известиях небольшого провинциального университета. Прошло порядочное число лет, пока его замечательные исследования сделались известными всем физикам.

Статистическая физика показывает путь, следуя по которому можно вычислить свойства тел, состоящих из данного количества частиц. Конечно, не следует думать, что эти методы расчета всемогущи. Если характер движения атомов в теле очень сложен, как это имеет место в жидкостях, то реальное вычисление становится практически неосуществимым.

<p><strong>Большие молекулы</strong></p><p><strong>Цепочки атомов</strong></p>

С природными веществами, состоящими из длинных молекул, в которых атомы связаны наподобие звеньев цепочки, химики и технологи имели дело давно. За примерами далеко ходить не надо: столь распространенные вещества, как каучук, целлюлоза, белок представляют собой цепочечные молекулы, состоящие из многих тысяч атомов. Структурные представления о таких молекулах возникли и развились в двадцатых годах, когда химики научились готовить их в лаборатории.

Одним из первых шагов в получении веществ, построенных из длинных молекул, было создание искусственного каучука. Эта великолепная работа была выполнена в 1926 г. советским химиком Сергеем Васильевичем Лебедевым. Задача получения каучука, который был остро необходим для изготовления автомобильных шин (резина ведь готовится из каучука), была продиктована тем, что природного каучука в Союзе не имеется.

В бразильских джунглях растет дерево гевея, источающее латекс - млечный сок, взвесь каучука. Индейцы делали из каучука мячи, пользовались им для создания обуви. Но в 1839 г. европейцы научились вулканизировать каучук. При обработке каучука Серой вместо липкого и текучего каучука получалась эластичная резина.

Сначала ее потребление было небольшим. Сейчас человечеству нужны миллионы тонн каучука в год. Гевея растет только в тропических лесах. Так что, если освобождаться от импорта, то надо готовить каучук на заводах.

Для этого требуется, конечно, знать, что же такое каучук. К началу работ Лебедева химическая формула каучука была известна. Вот она:

Нарисованная здесь цепочка не имеет ни начала, ни конца. Мы видим, что молекулы построены из одинаковых звеньев. Поэтому можно коротко записать формулу каучука в таком виде:

Число n достигает многих тысяч. Длинные молекулы, построенные из повторяющихся звеньев, получили название полимеров.

Теперь в технике и текстильной промышленности имеют широчайшее распространение очень большое число синтетических полимеров. К ним относятся нейлон, полиэтилен, капрон, полипропилен, полихлорвинил и многие другие.

Наиболее просто построена молекула полиэтилена. Мешочки из этого материала лежат теперь в ящиках кухонного стола в каждой квартире. Если предельно вытянуть молекулу полиэтилена, то она будет иметь вид, показанный на рис. 9.1. Как видите, физики сумели определить расстояния между атомами и углы между валентными связями.

Рис. 9.1

Длинные молекулы не обязательно состоят из повторяющихся звеньев, т. е. не могут быть представлены формулой такой, как для каучука. Химики научились "конструировать" молекулы, построенные из двух или более разных звеньев и следующие друг за другом как в порядке, так и в беспорядке. Если эти звенья чередуются в определенном порядке, скажем, по схеме

АВАВАВАВАВ,

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука