Читаем Физика для всех. Книга 3. Электроны полностью

Действительно, в отсутствие поля молекулы расположены «как попало». Дипольные моменты складываются геометрически. Поэтому для объема, содержащего много молекул, результирующий момент будет равен пулю. Электрическое поле «причесывает» молекулы, заставляет их смотреть преимущественно в одну сторону. В противоборство вступают две силы: тепловое движение, которое вносит беспорядок в расположение молекул, и упорядочивающее действие поля. Понятно, что чем выше температура, тем труднее полю «справиться» с молекулами. Отсюда и следует, что диэлектрическая проницаемость у таких веществ должна падать с уменьшением, температуры.

Для лучшего запоминания сказанного приводится рис. 2.2. Верхний рисунок показывает, что поляризация атома сводится к смещению и деформации электронных оболочек. Чем дальше расположен электрон от атома, тем больше скажется на нем действие поля. Слои, изображенные на этих схематических рисунках точками, символизируют места пребывания электронов. Надо помнить, что картина имеет весьма условный характер, так как разные электроны имеют в молекулах разные по форме области существования (см. стр. 102).

На среднем рисунке показано поведение симметричной двухатомной молекулы. В отсутствие поля она не обладает моментом. Поле наводит электрический момент. Он может быть разным по величине в зависимости от того, под каким углом молекула расположена по отношению к полю. Момент образуется благодаря деформации электронных оболочек.

Наконец, на нижней схеме показано поведение молекулы, обладающей дипольным моментом и в отсутствие поля. На нашей схеме молекула лишь повернулась. Однако в общем случае у веществ, молекулы которых обладают моментом в отсутствие поля, будут присутствовать оба механизма поляризации: наряду с поворотами молекул могут происходить и смещения электронов. Эти два эффекта нетрудно разделить, производя измерения при очень низких температурах, когда влияние теплового движения практически отсутствует.

Если эта модель справедлива, то мы не должны наблюдать температурную зависимость диэлектрической проницаемости у веществ, молекулы которых симметричны, например таких, как молекула кислорода или хлора. Если же двухатомная молекула состоит из двух разных атомов, как, например, молекула угарного газа СО, то в этом случае зависимость ε от температуры должна иметь место. Так оно и есть на самом деле. К молекулам с очень значительным дипольным моментом относится нитробензол.

Что будет происходить с обычным диэлектриком при увеличении электрического поля Е? Очевидно, должна увеличиваться поляризация вещества. Это происходит за счет растяжения диполей: в атоме это сдвиг электронного облака относительно ядра, в молекуле это может быть удаление друг от друга двух ионов. Как бы то ни было, естественно задать вопрос, до каких пор электрон, оттянутый полем далеко от ядра, является по-прежнему электроном атома, а два иона, находящиеся уже достаточно далеко друг от друга, образуют по-прежнему молекулу. Предел безусловно существует, и при достаточной напряженности Е происходит так называемый пробой диэлектрика. Порядок этой напряженности — несколько тысяч киловольт на метр. В любом случае, пробой связан с высвобождением электронов или ионов, т. е. созданием свободных носителей тока. Диэлектрик перестает быть диэлектриком, по нему течет электрический ток.

С явлением пробоя чаще всего приходится сталкиваться, когда выходит из строя конденсатор в телевизоре или радиоприемнике. Однако мы знаем и другие примеры пробоя — электрические разряды в газах. Об электрическом разряде в газах мы поговорим особо. А сейчас познакомимся с двумя важными членами семейства диэлектриков — пьезоэлектриками и сегнетоэлектриками.

Главным представителем класса пьезоэлектриков является кварц. Члены этого класса (к нему принадлежат, кроме кварца, к примеру, сахар и турмалин) должны обладать определенной симметрией. На рис. 2.3 изображен кристалл кварца. Главная ось этого кристалла — ось симметрии 3-го порядка. В перпендикулярной плоскости лежат три оси 2-го порядка.

Указанным на рисунке способом из кристалла вырезают пластинку толщиной около 2 см. Мы видим, что она перпендикулярна главной оси, а оси 2-го порядка лежат в ее плоскости. Затем из этой толстой пластинки перпендикулярно одной из осей 2-го порядка вырезают тонкую пластинку толщиной около 0,5 мм. С полученной таким образом тонкой пьезоэлектрической пластинкой (на рисунке справа она сдвинута вниз) можно произвести интересные опыты.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука