Но если так, то пучки атомов первых четырех элементов таблицы Менделеева не должны отклоняться в неоднородном магнитном поле. А на самом деле? Оказывается, что это предсказание не выполняется для атомов водорода и лития. Пучки этих атомов ведут себя исключительно странно. В обоих случаях поток атомов расщепляется на две компоненты, отклоненные в противоположные стороны на одинаковые расстояния от первичного направления. Непонятно!?
Спин электрона появился на сцене в 1925 году. Необходимость введения его в число участников событий, разыгрываемых в микромире, показали Абрахам Гаудсмит и Джордж Уленбек. Предположив, что электрон обладает собственным моментом импульса, эти исследователи показали, что все недоразумения, накопившиеся к тому времени при интерпретации атомных спектров, естественно разрешаются.
Опыты по расщеплению атомных пучков были проведены чуть позднее. И когда оказалось, что и здесь лишь с помощью понятия спина удается дать исчерпывающее объяснение наблюдаемым фактам, лишь тогда все физики поварили в спин.
Прошло еще немного времени и выяснилось, что собственный вращательный момент — спин — является свойством, присущим не только электрону, но и всем элементарным частицам.
Мы уже говорили, что название «спин» свидетельствует о естественной тяге к наглядности. Поскольку момент импульса вошел в физику как характеристика вращающегося твердого тела, то, выяснив, что для спасения закона сохранения элементарным частицам надо приписать некое значение момента импульса, многие физики тут же прибегли к наглядной картине вращения частицы около своей оси. Это наивное представление но выдерживает критики: говорить о вращении элементарной частицы около своей оси можно не с большим правом, чем рассуждать о вращении около своей оси математической точки.
Сторонники наглядности сумели из неких косвенных соображений оценить размер электрона, точнее — установить, что если это понятие и применимо к электрону, то размер электрона должен быть меньше определенной величины. Величина спина известна — мы приведем ее значение через несколько строк. Полагая, что электрон имеет форму, можно вычислить, с какой скоростью вращаются «точки его. поверхности». Оказывается, эта скорость больше скорости света. Упорство привело бы к необходимости расстаться с теорией относительности.
Пожалуй, наиболее убийственным доводом против наглядности является то, что нейтрон, который не несет на себе электрического заряда, обладает спином. Почему же этот довод является решающим? Судите сами.
Если частицу можно было бы представлять в виде заряженной сферы, то ее вращение около оси давало бы нечто вроде амперова тока. Но раз, уж нейтральная частица обладает, моментом импульса, а также и магнитным моментом (об этих свойствах нейтрона мы скажем несколько слов в четвертой книге), об аналогии с амперовым током не может быть и речи.
Конечно, не стоит становиться в позу пророка и говорить, что никогда не удастся объяснить спин и магнитный момент элементарных частиц, исходя из какого-то более общего, пока что не открытого закона (частично эта задача решается теорией замечательного английского физика Поля Дирака; но о ней мы не можем дать читателю даже общее представление — уж слишком она абстрактна). Однако сегодня мы должны считать «стрелочки», изображающие момент импульса и магнитный момент частицы, первичными (не сводящимися к чему-либо более простому) понятиями.
Лет пятьдесят назад большинство физиков держалось точки зрения Эйнштейна, который писал: «Всякая физическая теория должна быть такой, чтобы ее, помимо всяких расчетов, можно было проиллюстрировать с помощью простейших образов». Увы, мнение великого человека оказалось неверным. И уже много лет физики спокойно оперируют теориями, в которых фигурируют измеряемые величины, которым мы не можем сопоставить зрительного образа.
У электрона и других элементарных частиц нет «полюсов». В ряде случаев мы уверенно говорим об этих частицах как точечных, соглашаемся с тем, что понятие формы к элементарным частицам неприменимо, и, тем не менее, мы вынуждены приписать частицам, два векторных свойства — момент импульса (спин) и магнитный момент. Эти два вектора всегда лежат вдоль одной линии. Иногда они параллельны, а в других случаях аптипараллельны.
Опыт показывает, что общие формулы для проекций момента импульса и магнитного момента, которые мы привели на стр. 100, справедливы и для собственных моментов. Все эксперименты, как спектральные, так и по расщеплению пучков атомов в неоднородном магнитном поле, безупречно истолковываются, если для электрона числу и в формуле для проекции момента импульса разрешить принимать два значения: ± 1
/2.Что же касается формулы для проекции магнитного момента, то здесь число