При изменении магнитного потока силовые линии будут пересекать витки «своей» катушки. В катушке будет возникать ток самоиндукции. Согласно правилу Ленца этот ток будет направлен так, чтобы ослабить эффект, его вызвавший: внешняя ЭДС встречает особую помеху, которой не существовало тогда, когда ток был постоянным. Иными словами, у переменного тока имеется дополнительное сопротивление, обязанное тому, что магнитное поле, пересекая привода своей цепи, создает особую ЭДС, называемую ЭДС самоиндукции, которая ослабляет среднюю силу тока. Это дополнительное сопротивление называется индуктивным.
Опыт говорит (и это обстоятельство, без сомнения, покажется читателю вполне естественным), что магнитный поток, пронизывающий катушку (или, говоря более общо, пронизывающий весь контур тока), пропорционален силе тока: Ф
= L∙I. Что же касается коэффициента пропорциональностиМожно теоретически вывести и подтвердись на опыте, что индуктивное сопротивление
R
L = 2π∙ν∙L.Если омическое сопротивление (с которым мы знакомы) и емкостное сопротивление (с которым познакомимся ниже) малы, то сила тока в цепи равна;
I
=Для того чтобы судить о том, что «мало», а что «велико», прикинем значение индуктивного сопротивления для частоты городского тока и индуктивности 0,1 Г. Получим примерно 30 Ом.
Ну, а что собой представляет катушка с индуктивностью в один генри? Для оценки индуктивности катушек и дросселей (катушек с железными сердечниками) применяется следующая формула, которую мы даем без вывода:
здесь
ЭДС любого происхождения, а значит и ЭДС самоиндукции, производит работу. Эта работа, как нам известно, равна
Чтобы получить работу
Этот арифметический результат можно выразить следующим образом: работа ЭДС равняется разности величины
Именно поэтому вполне правомерно назвать величину
Рассмотрим теперь, как скажется на сопротивлении контура переменному току включение конденсатора.
Если в цепь постоянного тока включить конденсатор, то ток не пойдет. Ведь включить конденсатор — это все равно, что разорвать цепь. Но тот же самый конденсатор в цепи переменного тока не обратит ток в нуль.
Нас, разумеется, интересует причина этого различия. Объяснение несложное. После подключения цепи к источнику переменного тока электрический заряд начинает накапливаться на обкладках конденсатора. К одной обкладке подходит положительный заряд, к другой — отрицательный. Положим, что индуктивное и омическое сопротивления малы. Зарядка будет происходить до тех пор, пока напряжение на обкладках конденсатора не станет максимальным и равным ЭДС источника. В это мгновение сила тока равна нулю. Теперь напряжение источника начинает падать, конденсатор «разряжается».
Измеряя с помощью какого-либо прибора силу тока в цепи с конденсатором, мы можем убедиться в том, что сила тока будет разной в зависимости от двух величин. Во-первых, доказывается (и на опыте, и с помощью теоретических рассуждений), что ток уменьшается по мере падения частоты. Значит емкостное сопротивление обратно пропорционально частоте. Результат вполне естественный, ибо чем меньше частота, тем больше переменный ток, так сказать, приближается к току постоянному.
Изменяя геометрические параметры конденсатора, т. е. расстояние между пластинами и площади пластин, мы убедимся в том, что емкостное сопротивление также обратно пропорционально и емкости конденсатора.
Формула емкостного сопротивления имеет такой вид:
R
c = 1/2π∙ν∙CКонденсатор, емкость которого 30 микрофарад, при частоте городского тока дает сопротивление около 100 Ом.