Но должна быть ещё третья универсальная постоянная природы. Это следует просто, как говорят физики, из соображений размерности. Универсальные постоянные определяют величины масштабов в природе, они дают нам характеристические величины, к которым можно свести все другие величины в природе. Для полного набора таких единиц необходимы, однако, три основные единицы. Проще всего заключить об этом можно из обычных соглашений о единицах, как, например, из использования физиками системы CGS (сантиметр — грамм — секунда). Единицы длины, единицы времени и единицы массы вместе достаточно, чтобы образовать полную систему. Необходимы по меньшей мере три основные единицы. Их можно было бы заменить также единицами длины, скорости и массы или единицами длины, скорости и энергии и т. д. Но три основные единицы необходимы во всяком случае. Скорость света и планковский квант действия дают нам, однако, только две из этих величин. Должна быть ещё третья, и только теория, содержащая такую третью единицу, возможно, способна вести к определению масс и других свойств элементарных частиц. Если исходить из наших современных познаний об элементарных частицах, то, пожалуй, самым простым и самым приемлемым путём введения третьей универсальной постоянной является предположение о том, что существует универсальная длина порядка величины 10-13 см, длина, стало быть, сравнимая примерно с радиусами лёгких атомных ядер. Если из этих трёх единиц образовать выражение, имеющее размерность массы, то эта масса имеет порядок величины массы обычных элементарных частиц.
Если предположить, что законы природы действительно содержат такую третью универсальную постоянную размерности длины порядка величины 10-13 см, то тогда вполне возможно, что наши обычные представления могут быть применимы только к таким областям пространства и времени, которые велики по сравнению с этой универсальной постоянной длины. По мере приближения в своих экспериментах к областям пространства и времени, малым по сравнению с радиусами атомных ядер, мы должны быть готовы к тому, что будут наблюдаться процессы качественно нового характера. Явление обращения времени, о котором говорилось выше и пока что только как о возможности, выводимой из теоретических соображений, могло бы поэтому принадлежать этим мельчайшим пространственно-временным областям. Если это так, то, вероятно, его было бы нельзя наблюдать таким образом, что соответствующий процесс мог бы быть описан в классических понятиях. И всё же в той мере, в какой такие процессы могут быть описаны классическими понятиями, они должны обнаруживать также и классический порядок следования во времени. Но пока о процессах в самых малых пространственно-временных областях — или (что согласно соотношению неопределённостей приблизительно соответствует этому высказыванию) при самых больших передаваемых энергиях и импульсах — известно слишком мало.
В попытках достичь на основе экспериментов над элементарными частицами большего знания о законах природы, определяющих строение материи и тем самым структуру элементарных частиц, особенно важную роль играют определённые свойства симметрии. Мы напомним о том, что в философии Платона самые маленькие частицы материи были абсолютно симметричными образованиями, а именно правильными телами — кубом, октаэдром, икосаэдром, тетраэдром. В современной физике, правда, эти специальные группы симметрии, получающиеся из группы вращений в трёхмерном пространстве, не стоят больше в центре внимания. То, что имеет место в естествознании нового времени, ни в коем случае не является пространственной формой, а представляет собой закон, стало быть, в определённой степени пространственно-временную форму, и поэтому применяемые в нашей физике симметрии должны всегда относиться к пространству и времени совместно. Но определённые типы симметрии, кажется, в действительности играют в теории элементарных частиц наиболее важную роль.
Мы познаём их эмпирически благодаря так называемым законам сохранения и благодаря системе квантовых чисел, с помощью которых можно упорядочить соответственно опыту события в мире элементарных частиц. Математически мы можем их выразить с помощью требования, чтобы основной закон природы для материи был инвариантным относительно определённых групп преобразований. Эти группы преобразований являются наиболее простым математическим выражением свойств симметрии. Они выступают в современной физике вместо тел Платона. Наиболее важные здесь кратко перечислены.
Группа так называемых преобразований Лоренца характеризует вскрытую специальной теорией относительности структуру пространства и времени.
Группа, исследованная Паули и Гюрши, соответствует по своей структуре группе трёхмерных пространственных вращений — она ей изоморфна, как говорят математики, и проявляет себя в появлении квантового числа, которое эмпирически было открыто у элементарных частиц уже двадцать пять лет назад и получило название «изоспин».