Читаем Физика и философия полностью

Снова естественным исходным пунктом физического истолкования математических схем общей теории относительности является тот факт, что геометрия на малых расстояниях оказывается приблизительно евклидовой. В этой области общая теория относительности сближается с классической теорией. Поэтому здесь существует однозначная связь между математическими символами, измерениями и понятиями обычного языка. Напротив, в достаточно больших областях физически справедливой может оказаться неевклидова геометрия. Фактически уже задолго до того, как была создана общая теория относительности, возможность неевклидовой геометрии реального пространства обсуждалась математиками, особенно Гауссом в Гёттингене. Когда Гаусс производил очень точные измерительно-геодезические работы, которые велись на базе треугольника, образованного тремя горами: Брокеном в Гарце, Инзельбергом в Тюрингии и Хохен-Хагеном близ Гёттингена, он должен был также очень тщательно проверить дополнительно, составляет ли сумма трёх углов треугольника действительно 180; он считал вполне допустимым обнаружение отклонения, которое в таком случае доказало бы отступление от евклидовой геометрии. Но на самом деле он не смог обнаружить в пределах точности своих измерений никаких отклонений.

В случае общей теории относительности язык, на котором мы формулируем общие законы, вполне соответствует научному языку математика, а для описания самих экспериментов применяют, как всегда, обычные понятия, так как на малых расстояниях евклидова геометрия справедлива с достаточной точностью.

Но самая трудная проблема в отношении применения языка возникает в квантовой теории. Здесь нет никаких простых направляющих принципов, которые бы нам позволили связать математические символы с понятиями обычного языка. Единственное, что прежде всего знают, это тот факт, что наши обычные понятия не могут быть применены к строению атома. Снова можно было бы считать естественным исходным пунктом физического истолкования формализма тот факт, что математическая схема квантовой механики для расстояний, больших по сравнению с протяжённостью атома, приближается к математической схеме классической механики. Но даже это утверждение может быть высказано с некоторыми оговорками. И для больших расстояний существует много решений квантовомеханических уравнений, для которых найти аналогичные решения в пределах классической физики невозможно. В таких квантовомеханических решениях проявляет себя обсуждённая выше интерференция вероятностей, вовсе не существующая в классической физике. Поэтому даже в предельном случае очень больших размеров связь математических символов, с одной стороны, с измерениями и обычными понятиями — с другой, нисколько не тривиальна. Чтобы достигнуть однозначности такой связи, необходимо привлечь к рассмотрению ещё вторую сторону проблемы. Необходимо обратить внимание на то, что система, которую следует рассматривать согласно методам квантовой механики, на самом деле является частью значительно большей системы, в конечном счёте — всего мира. Она находится во взаимодействии с этой большой системой, и мы должны добавить ещё, что микроскопические свойства большей системы, по крайней мере в значительной степени, неизвестны. Эта формулировка, несомненно, правильно описывает положение дел, ибо система вовсе не могла бы быть предметом измерений и теоретических исследований, если бы она вообще не принадлежала к миру явлений, если бы её не связывало никакое взаимодействие с большей системой, частью которой является наблюдатель. Взаимодействие с этой большей системой, с её в значительной степени неизвестными, микроскопическими особенностями вводит тогда в описание — а именно и в квантовомеханическое, и в классическое описание — новый статистический элемент, который должен быть принят во внимание при рассмотрении системы. В предельном случае больших размеров этот статистический элемент в такой степени уничтожает результаты интерференции вероятностей, что теперь квантовомеханическая схема действительно сближается со схемой классической физики. В этом пункте можно поэтому установить однозначную связь между математическими символами квантовой теории и понятиями обычного языка, и этого соответствия оказывается фактически достаточно также для истолкования экспериментов. То, что остаётся, — это проблемы, снова затрагивающие скорее область языка, чем область фактов, так как понятие «факт» предполагает, что феномен может быть описан на обычном языке.

Однако проблемы языка здесь приобретают значительно более серьёзный характер. Мы хотим каким-то образом говорить о строении атома, а не только о наблюдаемых явлениях, к которым, например, относятся чёрные точки на фотографической пластинке или водяные капли в камере Вильсона. Но на обычном языке мы не можем этого сделать.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука