Кофе – фантастически ценный глобальный товар, а сеанс черной магии, позволяющий извлечь все лучшее из маленького и невзрачного на вид кофейного зерна, – постоянный источник споров (и некоторой доли снобизма) для кофеманов. Но мой конкретный интерес к этому напитку не зависит от способа обжарки кофейных зерен или степени давления пара в вашей кофеварке. Меня восхищает картина пролитого кофе[23]. Это одна из тех повседневных странностей, которые уже не удивляют моих знакомых. Лужица кофе на твердой поверхности совершенно непримечательна – обычная маленькая лужица слегка выпуклой формы. Но если вы дадите ей высохнуть, то найдете на ее месте лишь темно-коричневый контур, слегка напоминающий линию, нарисованную мелом вокруг тела жертвы в детективной драме. Поначалу вся область внутри контура была заполнена пролитым кофе, но в процессе высыхания он переместился на ее границу. Внимательное разглядывание лужицы кофе, с целью понять, как все происходит на самом деле, похоже на наблюдение за процессом высыхания краски, но даже при попытке отследить весь процесс от начала до конца вы вряд ли увидите очень много. Физика перемещения кофе при высыхании лужицы действует в очень малых масштабах, поэтому увидеть что-либо собственными глазами невозможно. Но зато мы можем оценить последствия этого процесса.
Если бы вы могли многократно увеличить масштаб изображения лужицы кофе, то заметили бы множество молекул воды, пребывающих в непрерывном движении и постоянно сталкивающихся друг с другом, а также гораздо более крупные по размеру сферические коричневые частицы кофе, спокойно дрейфующие посреди всей этой толчеи. Молекулы воды очень сильно притягивают друг друга, и если какая-то из них слегка приподнимается над поверхностью, она тотчас же возвращается обратно, чтобы воссоединиться с ордой молекул внизу. Это означает, что водная поверхность ведет себя подобно эластичному листу, притягиваемому водой под ним, в результате чего поверхность всегда остается гладкой. Эта очевидная эластичность поверхности называется поверхностным натяжением (подробнее мы поговорим о нем чуть позже). По краям лужицы кофе водная поверхность плавно загибается вниз, к месту своего соединения со столом, удерживая лужицу от дальнейшего растекания. Но в помещении, наверное, достаточно тепло для того, чтобы время от времени та или иная молекула воды полностью отрывалась от водной поверхности и в виде водяного пара плавала над лужицей. Это испарение, происходит оно постепенно и относится только к молекулам воды. Кофе не может испаряться, поэтому никуда не девается из лужицы.
Интереснее становится по мере того, как все большее число молекул покидают поверхность воды, поскольку ее край «приклеен» к столу (ниже мы поймем, почему), причем настолько прочно, что остается неподвижным. Но испарение по краям интенсивнее, чем в середине лужицы, потому что именно там высокая доля молекул воды соприкасается с воздухом. Конечно, вы не можете видеть, что содержимое лужицы пребывает в непрерывном движении (тем более что параллельно пытаетесь убедить приятеля, с которым распиваете кофе, что наблюдение за ее высыханием действительно увлекательное занятие). Жидкий кофе должен растекаться из середины лужицы к ее краям, возмещая потерю воды. Молекулы воды переносят частицы кофе, как пассажиров, и избавляются от них, когда настает их черед испаряться. Поэтому частицы кофе постепенно перемещаются к краям лужицы, а когда вода полностью высыхает, на месте происшествия остается лишь кольцо из покинутых частиц кофе.
Это явление кажется мне особенно увлекательным потому, что происходит буквально у вас под носом, но самые интересные подробности, к сожалению, невозможно увидеть невооруженным глазом. Микромир, в котором они разворачиваются, совершенно не похож на привычный нам мир; он живет по собственным законам и подчиняется собственным правилам. Тем не менее привычные для нас силы, такие как гравитация, действуют и в нем. Но роль других сил – возникающих вследствие «танцев» молекул вокруг друг друга – возрастает. Если вы углубитесь в микромир, вам многое покажется странным. Оказывается, правила, действующие в столь малых масштабах, способны объяснить практически все, что происходит в «большом» мире – макромире: почему на молоке уже нет сливок, почему запотевают стекла и как пьют воду деревья. Но мы также учимся использовать эти правила для применения в макромире. Их знание может помочь спасти миллионы жизней путем совершенствования планировки больничных палат и разработки новых медицинских тестов.
Прежде чем заняться предметами, настолько малыми, что их невозможно разглядеть невооруженным глазом, вы должны знать об их существовании. И здесь человек сталкивается с тупиковой ситуацией: если вы не знаете о существовании чего-либо, то как вы можете искать то, о чем даже не подозреваете? Но все изменилось в 1665 году, после публикации книги Роберта Гука «Микрография», ставшей первым в мире научным бестселлером.