Читаем Физика на каждом шагу полностью

3,14 x 0,00 0252 = около 0,0000002 см2.

Длина паутинной нити:

150 000 000 км = 15 000 000 000 000 см.

Отсюда определяется объем всей нити:

0,0000002 x 15 000 000 000 000 = 8 000 000 см3.

Мы знаем, что 1 см3 материала паутинной нити весит 1 г; поэтому вес нашей воображаемой паутины

3 000 000 г = 3 000 кг = 3 т.

Итак, паутинная нить, протянутая от Земли до самого Солнца, весила бы только 3 т! Ее можно было бы увезти на хорошем грузовике!

<p>Заглянуть внутрь отливки</p>

Знание удельного веса дает возможность, не распиливая изделия, как бы заглянуть внутрь него и установить, есть ли в нем пустоты, или же оно сплошное. Приведем пример.

Пусть у вас в руках медное изделие, – скажем, статуэтка, – и вы желаете узнать: сплошная она или внутри нее имеется полость? Просверливать, вообще повреждать статуэтку вы не желаете, конечно. Как поступить?

Прежде всего нужно определить объем статуэтки. Для этого наливаем в прямоугольную банку воду, замечаем высоту уровня воды и погружаем нашу статуэтку: по повышению уровня воды легко вычислить объем изделия. Пусть ширина банки 12 см, длина 15 м, а уровень воды поднялся на 1,5 см. Тогда объем воды, вытесненной изделием, равен 12 x 16 x 1,5 = 270 см3. Но эта прибавка есть, конечно, объем статуэтки. 1 см3 меди весит около 9 г. Поэтому, если бы вещь была сплошная, она весила бы примерно

270 x 9 = 2 430 г.

Теперь вы обращаетесь к весам (без которых в данном случае обойтись нельзя) и узнаете, что в действительности статуэтка весит всего 2 200 г, т. е. на 230 г меньше. Это показывает, что внутри нее имеется одна или несколько полостей, общий объем которых равен объему недостающих 230 г меди. Какой объем занимают 230 г меди? Мы узнаем это, разделив 230 на 9. Получим 25 1/2 см3.

Рис. 4. Простой способ определить объем статуэтки

Таким образом, не повреждая статуэтки, мы узнали не только то, что статуэтка заключает внутри себя полость или несколько полостей, но определили даже и объем этих пустот – около 25 см3.

<p>Какой металл самый тяжелый?</p>

В обиходе свинец считается тяжелым металлом. Он тяжелее цинка, олова, железа, меди, но все же его нельзя назвать самым тяжелым металлом. Ртуть, жидкий металл, тяжелее свинца; если бросить в ртуть кусок свинца, он не потонет в ней, а будет держаться на поверхности. Литровую бутылку ртути вы с трудом поднимете одной рукой: она весит без малого 14 кг. Однако и ртуть не самый тяжелый металл: золото и платина тяжелее ртути раза в полтора.

Рекорд же тяжеловесности побивают редкие металлы – иридий и осмий: они почти втрое тяжелее железа и более чем в сто раз тяжелее пробки; понадобилось бы 110 обыкновенных пробок, чтобы уравновесить одну иридиевую или осмиевую пробку таких же размеров.

Приводим для справок удельный вес некоторых металлов:

<p>Какой металл самый легкий?</p>

Техники называют «легкими» все те металлы, которые легче железа в два и более раз. Самый распространенный легкий металл, применяемый в технике, – алюминий, который легче железа втрое. Еще легковеснее металл магний: он легче алюминия в 1 1/2 раза. В последнее время техника стала пользоваться для изделий сплавом алюминия с магнием, известным под названием «электрон». Этот сплав, по прочности не уступающий стали, легче ее в четыре раза. Самый же легкий из всех металлов – литий – в технике пока еще не применяется. Литий не тяжелее еловой древесины; брошенный в воду, он не тонет.

Если сравнить между собою самый тяжелый и самый легкий металл – иридий и литий, то окажется, что первый весит больше второго в 40 с лишком раз.

Вот удельные веса некоторых легких металлов:

<p>Две бороны</p>

Часто смешивают вес и давление. Между тем это вовсе не одно и то же. Вещь может обладать значительным весом и все же оказывать на свою опору ничтожное давление. Наоборот, иная вещь при малом весе производит на опору большое давление. Из следующего примера вы сможете уяснить себе различие между весом и давлением, а заодно поймете и то, как нужно рассчитывать давление, производимое предметом на свою опору.

В поле работают две бороны одинакового устройства – одна о 20 зубьях, другая о 60. Первая весит вместе с грузом 60 кг, вторая – 120 кг. Какая борона работает глубже?

Легко сообразить, что глубже должны проникать в землю зубья той бороны, на которые напирает большая сила. В первой бороне общая нагрузка в 60 кг распределяется на 20 зубьев; следовательно, на каждый зуб приходится нагрузка в 3 кг. Во второй бороне на каждый зуб приходится всего 120/60, т. е. 2 кг. Значит, хотя вторая борона в общем тяжелее первой, зубья ее должны уходить в почву мельче. Давление на каждый зуб у первой бороны больше, чем у второй.

Перейти на страницу:

Похожие книги

Теория государства и права
Теория государства и права

Учебник, написанный в соответствии с курсом «Теория государства и права» для юридических РІСѓР·ов, качественно отличается РѕС' выходивших ранее книг по этой дисциплине. Сохраняя все то ценное, что наработано в теоретико-правовой мысли за предыдущие РіРѕРґС‹, автор вместе с тем решительно отходит РѕС' вульгаризированных догм и методов, существенно обновляет и переосмысливает РІРѕРїСЂРѕСЃС‹ возникновения, развития и функционирования государства и права.Книга, посвященная современной теории государства и права, содержит СЂСЏРґ принципиально новых тем. Впервые на высоком теоретическом СѓСЂРѕРІРЅРµ осмыслены и изложены РІРѕРїСЂРѕСЃС‹ новых государственно-правовых процессов современного СЂРѕСЃСЃРёР№ского общества. Дается характеристика гражданского общества в его соотношении с правом и государством.Для студентов, аспирантов, преподавателей и научных работников юридических РІСѓР·ов.Р

Алла Робертовна Швандерова , Анатолий Борисович Венгеров , Валерий Кулиевич Цечоев , Михаил Борисович Смоленский , Сергей Сергеевич Алексеев

Детская образовательная литература / Государство и право / Юриспруденция / Учебники и пособия / Прочая научная литература / Образование и наука