Читаем Физика на пальцах. Для детей и родителей, которые хотят объяснять детям полностью

Ядерные силы – самые мощные силы в природе. Их по-другому даже так и называют – сильное взаимодействие.

Еще раз: сильное взаимодействие – это сцепление нуклонов на короткой дистанции, в пределах размеров атомного ядра.

Но даже этих мощных сил не хватило бы, чтобы удержать в ядре одни только протоны, без нейтронов. Вот вам и ответ, зачем природе понадобились нейтроны. Для склейки ядер! Поскольку у нейтронов заряда нет, а ядерные силы есть, нейтроны таким образом «разбавляют» общий положительный заряд ядра, уменьшая электростатическое отталкивание. И только потому большие ядра могут стабильно существовать.

Причем чем больше номер химического элемента, то есть чем больше в нем протонов и, стало быть, электростатического отталкивания, тем больше требуется нейтронов для разбавления. И потому чем ниже и правее расположен элемент в таблице Менделеева, чем он тяжелее, тем больше в нем нейтронов по сравнению с протонами. Если у углерода на 6 протонов приходится 6 нейтронов, то у ртути, например, на 80 протонов идет не 80, а целых 120 нейтронов.

И еще момент. Вы, разглядывая таблицу Менделеева, не задавались вопросом: а отчего в этом наборе элементарных веществ (химических элементов) всего порядка сотни наименований?

В таблице Менделеева на сегодня больше ста элементов, но самые тяжелые из них, с номером более 92 в природе не встречаются и были получены искусственно учеными в ядерных реакторах. Почему же сверхтяжелые элементы (так называют элементы тяжелее урана) не встречаются в природе?

Потому что их ядра нестойкие. Даже образовавшись, они вскоре распадаются. Они такие большущие, что их размеры превышают радиус действия короткодействующих ядерных сил. Которые уже не могут дотянуться с одного края атомного ядра до другого. И ядро разваливается, как разделяется слишком большая капля под собственным весом.

Именно поэтому в нашем мире меньше сотни элементов. Ничего, хватает, чтобы построить целый мир и озадаченно ковырять в носу, разглядывая его…

Ну, и раз уж мы заговорили о стабильности, надо упомянуть один постыдный факт из жизни нейтронов. Он заключается в следующем – в отличие от протонов и электронов свободные нейтроны нестабильны.

В ядрах атомов нейтроны прекрасно существуют. А вот оставшись в одиночестве, быстро «умирают». Время жизни свободного нейтрона всего 15 минут.

Что же с ними случается? Свободный, одинокий нейтрон распадается на протон и электрон. Нейтрон как бы выстреливает электроном, который уносится в пространство. И на месте бывшего нейтрона остается одинокий протон.

Помните, мы говорили, что нейтрон и протон имеют практически одинаковую массу? Их масса различается практически на один электрон. Иными словами, нейтрон тяжелее протона всего лишь на массу одного электрона. Нейтрон как бы состоит из протона и электрона в одном флаконе. Но именно «как бы», поскольку он является самостоятельной солидной частицей со своими свойствами, и никакого электрона «внутри» нейтрона не содержится, электрон образуется в момент распада, в результате распадной реакции.

И я вам больше скажу: в атомном ядре нейтроны и протоны постоянно превращаются друг в друга, словно перебрасываясь плюсовым зарядом. Эта перепасовка выглядит так – бросил протон нейтрону подачу и превратился в нейтрон. А нейтрон, принявший пас, стал протоном. Вот так они и живут там, внутри ядра – в постоянной паутине зарядовых перепасовок. Поэтому физики иногда говорят, что протон и нейтрон – это одна и та же частица, только в разном зарядовом состоянии. Поэтому их и объединили под общим названием – нуклон. Нормально?

Теперь сообщу вам еще одну тонкость, без которой наше погружение в микромир будет неполным. Эта тонкость столь тонка, что доставила в свое время ученым немало головной боли. Они давно обнаружили, что при распаде нейтрона образуются протон и электрон, но у них не сходился энергетический баланс. Ну, то есть до реакции распада в системе (у нейтрона) была одна энергия, а после распада – чуть меньшая: в сумме протон и электрон не давали той энергии, которую имел нейтрон. Куда-то исчезал кусочек. Таких вещей физики не любят!

У физиков самые суровые законы – это законы сохранения массы, энергии, заряда…

Сколько было чего-то до эксперимента, столько и должно остаться после опыта. Это понятно: если вы взяли вазу и ударили ее молотком, разбив на куски, то все осколки вместе будут весить столько же, сколько целая ваза. Потому что масса не может исчезнуть или взяться из ниоткуда!

То же самое с энергией – если до реакции было столько-то энергии, значит после реакции ее должно столько же и остаться. Она ведь никуда не исчезает и не берется из ниоткуда, она просто переходит в другие формы.

То же самое с зарядом. Общий заряд до эксперимента должен быть равен общему заряду после эксперимента.

Перейти на страницу:

Похожие книги

Медвежонок
Медвежонок

Смерть для верховного мага всегда была лишь мелким недоразумением — после седьмой реинкарнации начинаешь по-другому относиться к этому процессу. Так, незначительная задержка в планах. Однако он забыл главное — когда планы мешают более сильным существам, за это следует наказание.Очередная смерть не принесла облегчения — его сослали в другой мир, в чужое тело, но самое страшное — ему оставили память только последнего перерождения. Всё, что маг знал или чему учился раньше, оказалось недоступно. В таких непростых обстоятельствах остаётся сделать выбор — либо выгрызать зубами место под солнцем, либо сложить лапки и сдаться.Лег Ондо не привык отступать — в клане Бурого Медведя отродясь трусов не водилось. Если бороться, то до конца. Если сражаться, то до последней капли крови. Главное — разобраться с правилами нового мира, его особенностями и понять, каким образом здесь действует магия. И тогда никто не скажет, что младший из Медведей недостоин места в этом мире!

Василий Маханенко , Василий Михайлович Маханенко , Джудит Моффетт , Евгений Иванович Чарушин , Сергей Николаевич Сергеев-Ценский

Детская литература / Самиздат, сетевая литература / Городское фэнтези / Прочая детская литература / Книги Для Детей