Читаем Физика на пальцах полностью

Молекулы воды, когда она превращается в лед, выстраиваются именно в форме такой вот жесткой решетки. Поэтому лед твердый.

? А когда вода жидкая, как расположены молекулы?..

А когда вода жидкая, ее молекулы расположены в хаотическом беспорядке, они суетятся, толкаются друг с другом, меняются местами — в общем, ведут себя, как толпа в метро. Они все еще тяготеют друг к другу, но уже очень подвижны от накачанного тепла, поэтому вода жидкая. Ткнул в нее пальцем и легко раздвинул молекулы. А в льдышку с ее жесткой кристаллической решеткой сколько пальцем ни тыкай, толку будет мало, если не считать сломанного пальца.

? А если вода превращается в газ и вылетает из носика чайника в атмосферу, что происходит тогда?..

А вот тогда она полностью теряет всякую структуру. У любого газа, включая водяной пар, молекулы уже не притягиваются друг к другу, а стремятся разбегаться во все стороны. Расстояние между ними становятся во много-много раз больше, чем в жидкости, поэтому газ такой неплотный и летучий. Его молекулы можно сдержать вместе только в какой-нибудь оболочке, типа баллона или воздушного шара. Но стоит в оболочке образоваться дырке, как молекулы начинают оттуда разлетаться.

То, что чуть выше написано касательно жидкости, было прекрасно продемонстрировано еще в XIX веке английским ученым по фамилии Броун. Интересно, что Броун не был физиком, а был безобидным ботаником, изучал растения и свое открытие в физике сделал случайно.

Броун изучал под микроскопом пыльцу растений и заметил, что маленькие частички пыльцы, находящиеся в воде, все время дрожат и немного двигаются то в одну сторону, то в другую. В общем, они хаотически, то есть беспорядочно, перемещаются, словно живые. Позже выяснилось, что так же ведет себя не только пыльца растений, но и любое вещество, растертое в мельчайшую пыль.

Оказалось, хаотичное движение пылинок, их дерганье туда-сюда вызывается беспорядочным движением молекул воды, которые барабанят в пылинку. Конечно, даже самые микроскопические пылинки любого вещества — настоящие гиганты по сравнению с молекулами воды! Молекула по сравнению с пылинкой — все равно, что кошка по сравнению с небоскребом. Кошка не может сдвинуть небоскреб. Пылинка состоит из миллионов и даже миллиардов молекул. Но ведь и вокруг пылинки тоже беспорядочно мечутся миллионы и миллиарды молекул воды! И когда в какой-то момент с одной стороны пылинку случайно толкает чуть больше молекул, чем с другой стороны, она чуть смещается в ту сторону. Потом в другую. Так и ползает туда-сюда, беспорядочно дергаясь каждую секунду туда, куда ее стукануло больше молекул.

В честь первооткрывателя этого явления ботаника Броуна подобное бессмысленное движение частичек в воде называют броуновским движением. Оно и вправду совершенно бестолковое, случайное.

Теперь вот какой вопрос. Понятно, что все молекулы любого вещества имеют свойство притягиваться друг к другу. Иначе вещество просто разваливалось бы на молекулы. А так все вокруг прекрасно существует и не разваливается. Стоит шкаф и не рассыпается на молекулы. И книжка перед вами даже не думает разлетаться в пыль.

Почему же тогда у молекул газа это свойство притяжения теряется? Если воду превратить в газ, она разлетится во все стороны…

Все дело в том, что у газа процесс притяжения молекул полностью пересиливается другим процессом. Каким? Отталкиванием, что ли? Но разве могут частички вещества одновременно обладать свойством и притяжения, и отталкивания друг к другу?

Разгадка в том, что в твердом веществе молекулы вещества почти неподвижны. Они находятся в узлах кристаллической решетки, сцепившись, и только чуть-чуть трясутся. Оттого твердое вещество такое прочное. В жидкости же скорость молекул больше, и они уже не удерживаются в плотной застройке структурной решетки, а топчутся бесформенной толпой. А вот в газе скорость молекул еще больше. Она такая большая, что молекулы просто проскакивают друг мимо друга, поскольку мечутся с огромными скоростями.

Эти скорости молекулам сообщает нагрев. Нагрели лед — он растаял. Нагрели воду — закипела, превратилась в пар. Но что такое нагрев и что такое тепло? К этому вопросу мы еще вернемся, а пока вот вам наилучшая аналогия твердого, жидкого и газообразного.

Дети в классе — это кристалл. Они сидят за партами по своим ячейкам решетки, образованной рядами парт.

Дети на уроке физкультуры — жидкость. Они бегают по всему залу, прыгают, но из зала не выходят, а держатся все вместе, одним классом.

А вот хаотичные дети на переменке — это сущий газ! Класс распадается, и ужасные дети, приобретя энергию безумия, начинают носиться по всей школе, сталкиваясь друг с другом в броуновском движении и норовя сбить с ног толстые пылинки случайных взрослых посетителей или учителей. Так они и будут носиться, пока их не заморозит школьный звонок.

Газы!

Кислород O2

Перейти на страницу:

Все книги серии Научные сказки

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука