Согласно Ньютону, обогнать свет можно без особого труда — ведь ни сам свет, ни его скорость не представляют собой ничего особенного. Это означало, что если вы будете нестись рядом с лучом света со скоростью, равной его скорости, то луч в вашей системе координат остановится. Но Эйнштейн еще в юности понял, что никто никогда не видел неподвижной световой волны — и вообще непонятно, как ее можно остановить. А значит, решил он, механика Ньютона здесь не работает.
В конце концов Эйнштейн нашел ответ на этот вопрос; он был тогда студентом в Цюрихе и изучал теорию Максвелла. Он обнаружил факт, которого не знал даже Максвелл: что скорость света постоянна и не зависит от скорости вашего движения. Не важно, будете ли вы нестись прочь от светового луча или догонять его, сам он будет двигаться с прежней скоростью, но это, вообще говоря, противоречит здравому смыслу. Эйнштейн нашел ответ на свой детский вопрос: невозможно лететь рядом со световым лучом, потому что он всегда удаляется от вас с одинаковой скоростью, как бы быстро ни двигались вы сами.
Но ньютонова механика — сложная система с прочными и жесткими связями: если потянуть за свободный кончик, т.е. хоть немного изменить исходные данные, вся система рассыплется. В теории Ньютона время в любой точке Вселенной течет одинаково. Одна секунда на Земле в точности равна одной секунде на Марсе или Венере. Точно так же метр на Земле имеет в точности ту же длину, что метр на Плутоне. Но если предположить, что скорость света постоянна и не зависит от скорости движения наблюдателя, то надо полностью менять представления о пространстве и времени. Чтобы скорость света оставалась постоянной, и пространство, и время необходимо было серьезно исказить.
Согласно Эйнштейну, если вы находитесь в быстро летящем космическом корабле, ход времени в нем замедляется по отношению к земному времени. Время в корабле и на Земле идет с разной скоростью, в зависимости от того, насколько быстро движется корабль. Мало того, пространство внутри корабля сжимается, и в зависимости от скорости его движения метр может изменять свою длину, а масса корабля увеличивается. Если бы мы заглянули в такой космический корабль, скажем, при помощи телескопа, мы бы увидели, что часы идут медленно, и люди — сплющенные по ходу движения корабля — двигаются тоже замедленно.
Вообще говоря, если бы ракета летела со скоростью света, то время в ней, по всей видимости, остановилось бы, сама она схлопнулась бы до нулевой длины, а масса ее стала бы бесконечной. Поскольку все это представляется невыполнимым и противоречит здравому смыслу, Эйнштейн объявил, что световой барьер преодолеть невозможно. (Тот факт, что объект становится тем тяжелее, чем быстрее он движется, означает, что энергия движения переходит в массу. Точное количество энергии, которая при этом превращается в массу, посчитать несложно — всего за несколько строк преобразований можно получить знаменитое уравнение Е = mc2
.)С тех пор как Эйнштейн вывел свое прославленное уравнение, его революционные идеи нашли подтверждение буквально в миллионах экспериментов. К примеру, система GPS, способная определить ваше положение на Земле с точностью до нескольких метров, не сможет работать, если не вводить в нее релятивистские поправки. (Поскольку военные теперь тоже зависят от системы GPS, физикам пришлось вводить в курс теории относительности Эйнштейна даже генералов Пентагона.) Часы GPS действительно замедляются при движении спутников по орбите, как и предсказывал Эйнштейн.
Самое наглядное подтверждение справедливости этой концепции можно найти в ускорителях, где ученые разгоняют частицы до околосветовых скоростей, На гигантском ускорителе CERN, построенном в Швейцарии недалеко от Женевы, — Большом адронном коллайдере — протоны ускоряются до нескольких триллионов электрон-вольт и приближаются вплотную к скорости света.
Для ученого-ракетчика световой барьер пока не представляет насущной проблемы, ведь скорости современных ракет составляют всего лишь 10-15 км/с. Но лет через сто или двести, когда ученые всерьез задумаются об отправке зондов к ближайшей звезде (которую отделяют от Земли четыре с небольшим световых года), световой барьер, скорее всего, постепенно превратится в проблему.
Несколько десятилетий физики пытаются отыскать в знаменитом постулате Эйнштейна хоть какие-то лазейки. Кое-что удалось обнаружить, но в большинстве своем эти лазейки не слишком полезны практически. К примеру, если провести по небосводу лучом фонарика, то в принципе световой зайчик от луча может двигаться быстрее света. За несколько секунд образ светового луча проходит расстояние между противоположными точками горизонта, составляющее, вообще говоря, сотни световых лет. Но это не имеет значения, так как таким образом невозможно передать какую бы то ни было информацию. Получается, что образ светового луча превысил скорость света, но образ как таковой не несет ни энергии, ни информации.