Встанем на скамью Жуковского, держа в руках за неподвижную ось переднее колесо велосипеда, желательно побольше диаметром и помассивнее (рис. 38). Прижимая колесо к себе шиной, раскрутимся на скамье до угловой скорости, которую легко сможем выдержать не падая. Затем, отодвинув колесо от себя, перевернем его за ось на 180 градусов на другую сторону. Колесо будет вращаться в подшипниках на оси с той же угловой скоростью, что и раньше, только в другую сторону. Затормозим колесо, прижав его к себе шиной, тем самым отобрав у него кинетическую энергию вращения. Теперь опять перевернем это колесо, опять же тормозя его и отбирая кинетическую энергию.
Рис. 38. Опыт, имитирующий отбор энергии от вращающейся Земли.
Этим опытом мы смоделируем предполагаемое использование энергии вращения Земли с помощью переворачиваемого маховика. Обратим внимание на то, что угловая скорость скамьи Жуковского, имитирующей Землю, не уменьшается (не учитывая, конечно, потери в подшипниках на собственное вращение), несмотря на то, что после каждого переворота колеса мы тормозим его, отбирая кинетическую энергию.
Интересно, какое объяснение дадут этому «неправдоподобному» опыту сами ученики. Можно только добавить, что будем считать упомянутый мощный манипулятор, который, как руками, сможет подхватить маховик за подшипники и перевернуть его, технически исполнимым.
Объяснение этого парадокса заключается в том, что, переворачивая маховик, мы вызываем гироскопический момент, разгоняющий Землю. Вновь «скрепляя» Землю с маховиком после его переворота, мы Землю тормозим. Поэтому скорость вращения Земли при переворачивании маховика никак не изменится. А энергия, затраченная на «переворот» маховика, перейдет в тепло при его соприкосновении с Землей.
Так что энергии от вращения Земли, находясь на ней самой, получить нельзя.
Список использованной и рекомендуемой литературы
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26. Физика (Механика) / Под ред. Г. Д. Мякишева. – М.: Просвещение, 1995.
27.
28.