Имеющиеся символы соответствуют символам римской системы счисления. У некоторых римских счетов были специальные линии для работы с дробями. Широко известны в наше время китайские счеты, называющиеся суанъпанъ, которые можно найти в сувенирных магазинах. Как видно на рисунке, они состоят из деревянной рамки с рядом спиц, разделенных на две части. Верхняя часть, называемая небо, имеет две костяшки, каждая из которых равна 5, а в нижней части (земля) находятся пять костяшек, каждая из которых равна единице. Способ счета — приближение соответствующих костяшек к центральной разделительной поперечине. Справа налево появляются единицы, десятки, сотни, тысячи и так далее. Каждый раз, когда на одном уровне образуется целый десяток, он удаляется и добавляется одна единица на уровне выше.
Японские счеты, или соробан, похожи на китайские, но в небе находится только одна костяшка, а на земле — четыре, чего достаточно для осуществления арифметических операций. Русские счеты состоят из рамы со спицами, на которые нанизано по десять костяшек без всякого разделения.
В течение нескольких веков счеты были главным устройством для вычислений; существовала даже профессия абакиста, осуществлявшего расчеты с помощью этого инструмента. Когда в Европе начали вводить арабские цифры, позволяющие перейти к позиционной системе счисления, абакисты встретили нововведения крайне враждебно, призывая оставить классический способ вычисления. Известна иллюстрация, сделанная Грегором Рейшем для работы Margarita philosophica {«Жемчужина философии»), на которой встречаются абакист, в данном случае Пифагор, и Боэций — алгорист, использующий новые арабские цифры. Несмотря на свои явные преимущества, позиционная система счисления полностью прижилась в Европе только в XVI веке.
До XVII века не было изобретено ничего нового, способного упростить вычисления. В 1617 году шотландский математик Джон Непер опубликовал свой труд, который стал известен как «Рабдология». В нем ученый представил ряд таблиц, позволявших превратить произведение в сумму, а деление — в вычитание. Эти таблицы получили название палочек Непера. Изобретение состояло из ряда вертикальных столбцов: в каждом из них имелось девять квадратов, разделенных на две части диагональной чертой, кроме самого верхнего. В верхнем квадрате стояло число, которое нужно было умножить, а нижние квадраты содержали результат умножения этого числа на два, три, четыре и так далее до девяти.